Leetcode_70_Climbing Stairs
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/41851705
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
思路:
(1)题意为有一个n阶的梯子,一次你只能上一个或两个台阶,求你有多少种上台阶的方法。这道题其实很简单,就看你能不能想到它和某一个挺有名数列之间的联系,其考察我们发现规律和对常见数学数列理解的能力。
(2)这里我们不妨列举,并从中发现规律:
当n=1时,ways=1
当n=2时,有[2] [1,1]两种情况,ways=2
当n=3时,有[1,1,1] [1,2] [2,1]三种情况,ways=3
当n=4时,有[1,1,1,1] [2,2] [1,1,2] [1,2,1] [2,1,1]五种情况,ways=5
当n=5时,有[1,1,1,1,1] [2,2,1] [2,1,2] [1,2,2] [1,1,1,2] [1,1,2,1] [1,2,1,1] [2,1,1,1]八种情况,ways=8
(3)这样我想你一眼就能看出规律了,当n>3时,n对应的情况数字为n-1和n-2之和。此时,规律正好和斐波那契数列出现的规律对应。
(4)斐波拉切数列是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,其被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2)
(5)这样,我们就能够用递归的方法求得结果了。其实,很多题目看似挺难的样子,可能一时半刻想不到好的解题思路,就像这道题一样,刚开始我也没啥头绪,后来我就尝试先列举一排数字看看结果,然后就发现这不正好和斐波拉切数列对应的么,知道斐波拉切数列,结果也就出来了。所以我建议大家遇到看似挺难的题时,要去分析题目,一步步去理解,可能答案在你分析的过程中就会浮现出来,不要放弃。
(6)注:斐波拉切数列的另一种常见表述为“生兔子问题”。之前遇到的好多校招笔试题中都会出现这个题目,所以找工作同学可以多关注一下这个数列。其算法实现用递归很容易实现。希望对你有所帮助。谢谢。
算法代码实现如下所示:
public int climbStairs(int num) {
//该题目和斐波拉切数列、生兔子问题属于同一类问题
// 如果定义为 int则num=46时会越界;如果定义为long则num=92时会越界
if (num <= 0)
return 0;
int[] sum = new int[num+1];
for (int i = 0; i <= num; i++) {
if (i == 0)
sum[i] = 1;
if (i == 1)
sum[i] = 1;
if (i > 1) {
sum[i] = sum[i - 1] + sum[i - 2];
}
}
return sum[num];
}
Leetcode_70_Climbing Stairs的更多相关文章
- [LeetCode] Climbing Stairs 爬梯子问题
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- [LintCode] Climbing Stairs 爬梯子问题
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- Leetcode: climbing stairs
July 28, 2015 Problem statement: You are climbing a stair case. It takes n steps to reach to the top ...
- LintCode Climbing Stairs
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- 54. Search a 2D Matrix && Climbing Stairs (Easy)
Search a 2D Matrix Write an efficient algorithm that searches for a value in an m x n matrix. This m ...
- Climbing Stairs
Climbing Stairs https://leetcode.com/problems/climbing-stairs/ You are climbing a stair case. It tak ...
- 3月3日(6) Climbing Stairs
原题 Climbing Stairs 求斐波那契数列的第N项,开始想用通项公式求解,其实一个O(n)就搞定了. class Solution { public: int climbStairs(int ...
- Cllimbing Stairs [LeetCode 70]
1- 问题描述 You are climbing a stair case. It takes n steps to reach to the top. Each time you can eithe ...
- leetCode 70.Climbing Stairs (爬楼梯) 解题思路和方法
Climbing Stairs You are climbing a stair case. It takes n steps to reach to the top. Each time you ...
随机推荐
- 使用ffmpeg转码时遇到aac报错
今天尝试用ffmpeg转一个视频的格式,结果报出这个错误: The encoder 'aac' is experimental but experimental codecs are not enab ...
- String字符串的操作
字符串的常用操作 # Author:nadech name = "my name is nadech" print(name.count("a")) print ...
- VSCode 插件推荐
vscode-icons 用于项目中文件类型显示对应的图标,提高文件定位的效率. vscode-tslint 用于 TS 的规范检测 Path Intellisense 用于提示导入文件时候的路 ...
- 全新 Kali Linux 系统安装指南
Kali Linux 系统可以说是在安全测试方面最好的开箱即用的 Linux 发行版.Kali 下的很多工具软件都可以安装在大多数的 Linux 发行版中,Offensive Security 团队在 ...
- ajax中xmlhttp.readyState和xmlhttp.status的值及解释
xmlhttp.readyState的值及解释: 0:请求未初始化(还没有调用 open()). 1:请求已经建立,但是还没有发送(还没有调用 send()). 2:请求已发送,正在处理中(通常现在可 ...
- 20160224.CCPP体系详解(0034天)
程序片段(01):指针与结构体.c 内容概要:指针与结构体 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include < ...
- Android开发之手把手教你写ButterKnife框架(一)
欢迎转载,转载请标明出处: http://blog.csdn.net/johnny901114/article/details/52662376 本文出自:[余志强的博客] 一.概述 JakeWhar ...
- [CSDN_Markdown]使用LaTeX基本数学公式
简介 以前我很头疼在博文里写公式,一直期盼CSDN的博文编辑器能支持LaTeX 公式输入,今天终于可以使用这个功能了!此文主要讨论如何在CSDN的Markdown编辑器中写 LaTeX 公式! 使用L ...
- frameset 与frame 设置的技巧
今天来写点不一样的.如下图: 实现的效果就是原生的类似于导航形式的frameset. frameset 注意: 包含frameset的网页应该只是作为框架而存在,所以不能有body标签. 这个标签可以 ...
- 假设一个大小为100亿个数据的数组,该数组是从小到大排好序的,现在该数组分成若干段,每个段的数据长度小于20「也就是说:题目并没有说每段数据的size 相同,只是说每个段的 size < 20 而已」
假设一个大小为100亿个数据的数组,该数组是从小到大排好序的,现在该数组分成若干段,每个段的数据长度小于20「也就是说:题目并没有说每段数据的size 相同,只是说每个段的 size < 20 ...