【BZOJ3529】【SDOI2014】 数表
Time Limit: 10 Sec Memory Limit: 512 MB
Description
有一张\(n×m\)的数表,其第i行第j列(\(,1 \le i \leq n,1 \le j \le m\))的数值为
能同时整除\(i\)和\(j\)的所有自然数之和。给定\(a\),计算数表中不大于\(a\)的数之和。
Input
输入包含多组数据。
输入的第一行一个整数\(Q\)表示测试点内的数据组数,接下来Q行,每行三个整数\(,,n,m,a\)(\(|a| < =10^9\))描述一组数据。
Output
对每组数据,输出一行一个整数,表示答案模\(2^{31}\)的值。
Sample Input
2
4 4 3
10 10 5
Sample Output
20
148
HINT
\(1 \le n,m \le 10^5 \\ 1 \le Q \le 2×10^4\)
Solution
先忽略\(a\)的条件。
令\(f(n)\)表示\(n\)的所有约数之和, \(sum(x)\)表示\(且x=gcd(i,j),1\le i \le n且1\le j \le m\)的数对数量.
按照之前的反演,\(sum(x)=\sum\limits_{x|d}\mu(\frac dx)\lfloor\frac nd\rfloor\lfloor\frac md\rfloor=\sum\)
\[
\begin{aligned}
ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_{d|i且d|j}d\\
&=\sum_{i=1}^n\sum_{j=1}^mf(gcd(i,j))\\
&=\sum_{d=1}^{min(n,m)}f(d)sum(d)\\
&=\sum_{d=1}^{min(n,m)}f(d)\sum_{x|d}\mu(\frac dx)\lfloor\frac nd\rfloor\lfloor\frac md\rfloor\\
&=\sum_{d=1}^{min(n,m)}f(d)\sum_{k=1}^{\lfloor min(n,m)/d\rfloor}\mu(\frac {kx}x)\lfloor\frac n{kx}\rfloor\lfloor\frac m{kx}\rfloor\\
&=\sum_{T=1}^{min(n,m)}\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor\sum_{d|T}f(d)\mu(\frac Td)\\
&=\sum_{T=1}^{min(n,m)}\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor g(T) &令g(x)=\sum_{d|x}f(d)\mu(\frac xd)
\end{aligned}
\]
其实\(g(x)\)是可以暴力求解的...因为\(x\)的因数个数不是很多。但是我们不能直接算完,因为有\(a\)的限制。由此要引入树状数组。
回头看\(a\)的条件,从第三行等式来看,只有\(d\leq a\)的\(f(d)\)才能有贡献。
我们用一个树状数组来维护\(g(x)\)的前缀和,那么对于询问,按照\(a\)排序,将所有\(x\le a\)的\(f(x)\),枚举\(x|y\)的\(y\),更新\(g(y)+=f(x)\mu(\frac yx)\)。
这样按照分块的套路求解\(ans\)即可.
f函数求解
\(f(x)=\sum\limits_{d|x}d\)
\(f(x)\)是积性函数,可以用线性筛求解:
(1) \(x\)是质数时,\(f(x)=1+x\)
(2)循环\(i\)与\(p\)筛到\(x\), \(x\)=\(p*i\).
若\(i\nmid p\),则\(i\)与\(p\)互质,那么\(f(x)=f(i)f(p)=f(i)*(p+1)\).
若\(i|p\),记\(i\)去除所有\(p\)因子后的数为\(a\). 则\(f(x)=f(i)*p+f(a)\).
记\(i=p_1^{q_1}p_2^{q_2}...p_k^{q_k}\),则\(x=p_1^{q_1}p_2^{q_2}...p_{loc}^{q_{loc}+1}...p_k^{q_k}\),\(a=p_1^{q_1}..p_{loc-1}^{q_{loc-1}}p_{loc+1}^{q_{loc}+1}...p_k^{q_k}\).不严谨地,这里\(p_{loc}\)和\(q_{loc}\)分别代表的是\(p\),与\(p\)在质因数分解中的指数。
\[
\begin{aligned}
f(i)*p&=(1+p1+...+p1^{q1})...(1+p_{loc}+...+p_{loc}^{q_{loc}})...(1+p_k+...+p_k^{q_k})*p\\
&=(p_{loc}+p_{loc}^2+..+p_{loc}^{q_{loc}+1})f(a)\\
\therefore f(i)*p&+f(a)=(1+p_{loc}+p_{loc}^2+...+p_{loc}^{q_{loc}+1})f(a)=f(x)
\end{aligned}
\]
【BZOJ3529】【SDOI2014】 数表的更多相关文章
- [bzoj3529][Sdoi2014]数表_树状数组_莫比乌斯反演
数表 bzoj-3529 Sdoi-2014 题目大意:n*m的数表,第i行第j列的数是同时整除i和j的所有自然数之和.给定a,求数表中所有不超过a的和. 注释:$1\le n,m \le 10^5$ ...
- BZOJ3529 [Sdoi2014]数表 【莫比乌斯反演】
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2151 Solved: 1080 [Submit][Status ...
- bzoj千题计划205:bzoj3529: [Sdoi2014]数表
http://www.lydsy.com/JudgeOnline/problem.php?id=3529 有一张n*m的数表,其第i行第j列(1 < =i < =n,1 < =j & ...
- BZOJ3529 [Sdoi2014]数表【莫比乌斯反演】
Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...
- 莫比乌斯反演套路二--(n/d)(m/d)给提出来--BZOJ3529: [Sdoi2014]数表
一个数表上第i行第j列表示能同时整除i和j的自然数,Q<=2e4个询问,每次问表上1<=x<=n,1<=y<=m区域内所有<=a的数之和.n,m<=1e5,a ...
- BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)
Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...
- BZOJ3529: [Sdoi2014]数表
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3529 挺恶心的数论TAT... 设f[i]是i的约数和,这个可以nln(n)扫出来. ans= ...
- bzoj3529: [Sdoi2014]数表 莫比乌斯反演
题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...
- BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)
题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...
- 题解【bzoj3529 [SDOI2014]数表】
Description \(T\) 组询问,定义 \(F(n)=\sum\limits_{d|n}d\).每次给出 \(n,m,a\) 求 \[\sum\limits_{i=1,j=1,F(\gcd( ...
随机推荐
- android 设置TextView水平滚动和解决首行缩进问题
android:ellipsize="marquee" android:focusable="true" android:focusableInTouchMod ...
- Centos7.3下mysql5.7.18安装并修改初始密码的方法
Centos7.3下mysql5.7.18安装并修改初始密码的方法 原文链接:http://www.jb51.net/article/116032.htm 作者:Javen205 字体:[增加 减小] ...
- SQL查询系列1---
1.查询关系为夫妻,年龄相加大于60的信息 表1 信息表 info id 编号 sex 性别 0-女,1-男 age 年龄 表2 关系表 rel id1 编号1 外键 id2 编号2 外键 r ...
- Apache Traffic Server服务搭建
一.简介 Apache Traffic Server(ATS或TS)是一个高性能的.模块化的HTTP代理和缓存服务器,与 Nginx 和 Squid 类似.它通过将频繁访问的信息缓存在网络的边缘来改善 ...
- 面试中的Https
在Http协议中有可能存在信息窃听或身份伪装的安全问题.使用HTTPS通信机制可以有效地防止这些问题. Https Http的缺点 通信使用明文(不加密),内容可能会被窃听. 不验证通信方的身份,因此 ...
- C# Ioc 接口注册实例以及注入MVC Controller
当弄一个小程序时,就忽略了使用Ioc这种手段,作为一个帅气程序员,代码规范,你懂的~,废话不多说,快速搭建一个Ioc接口实例以及直接注入到 MVC Controller 构造函数中如下: MVC in ...
- 节点操作,节点属性的操作及DOM event事件
##1. 节点操作 createElement(标签名) 创建一个指定名称的元素 someone.appendChild(new_node) 追加一个子节点(作为最后的子节点) someone.ins ...
- zabbix server总是stoped,找到此方法解决了问题
zabbix日志报错: One child process died (PID:8885,exitcode/signal:1). Exiting ... syncing history data... ...
- tomcat管理授权:tomcat-users.xml
ou are not authorized to view this page. If you have already configured the Manager application to a ...
- php用正则匹配出图片img标签中的src路径(兼容)
用php抓图片是个常用的需求,下面提供一个比较兼容的正则表达式来实现php抓取出页面.字符串中所有图片的src. 下面是一个范例,能匹配各种标签格式写法的图片,不管src在什么地方,还是单引号.双引号 ...