SparkContext是开发Spark应用的入口,它负责和整个集群的交互,包括创建RDD,accumulators and broadcast variables。理解Spark的架构,需要从这个入口开始。下图是官网的架构图。

DriverProgram就是用户提交的程序,这里边定义了SparkContext的实例。SparkContext定义在core/src/main/scala/org/apache/spark/SparkContext.scala。

Spark默认的构造函数接受org.apache.spark.SparkConf, 通过这个参数我们可以自定义本次提交的参数,这个参数会覆盖系统的默认配置。

先上一张与SparkContext相关的类图:

下面是SparkContext非常重要的数据成员的定义:

  // Create and start the scheduler
private[spark] var taskScheduler = SparkContext.createTaskScheduler(this, master)
private val heartbeatReceiver = env.actorSystem.actorOf(
Props(new HeartbeatReceiver(taskScheduler)), "HeartbeatReceiver")
@volatile private[spark] var dagScheduler: DAGScheduler = _
try {
dagScheduler = new DAGScheduler(this)
} catch {
case e: Exception => throw
new SparkException("DAGScheduler cannot be initialized due to %s".format(e.getMessage))
} // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's
// constructor
taskScheduler.start()

通过createTaskScheduler,我们可以获得不同资源管理类型或者部署类型的调度器。看一下现在支持的部署方法:

 /** Creates a task scheduler based on a given master URL. Extracted for testing. */
private def createTaskScheduler(sc: SparkContext, master: String): TaskScheduler = {
// Regular expression used for local[N] and local[*] master formats
val LOCAL_N_REGEX = """local\[([0-9]+|\*)\]""".r
// Regular expression for local[N, maxRetries], used in tests with failing tasks
val LOCAL_N_FAILURES_REGEX = """local\[([0-9]+|\*)\s*,\s*([0-9]+)\]""".r
// Regular expression for simulating a Spark cluster of [N, cores, memory] locally
val LOCAL_CLUSTER_REGEX = """local-cluster\[\s*([0-9]+)\s*,\s*([0-9]+)\s*,\s*([0-9]+)\s*]""".r
// Regular expression for connecting to Spark deploy clusters
val SPARK_REGEX = """spark://(.*)""".r
// Regular expression for connection to Mesos cluster by mesos:// or zk:// url
val MESOS_REGEX = """(mesos|zk)://.*""".r
// Regular expression for connection to Simr cluster
val SIMR_REGEX = """simr://(.*)""".r // When running locally, don't try to re-execute tasks on failure.
val MAX_LOCAL_TASK_FAILURES = 1 master match {
case "local" =>
val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true)
val backend = new LocalBackend(scheduler, 1)
scheduler.initialize(backend)
scheduler case LOCAL_N_REGEX(threads) =>
def localCpuCount = Runtime.getRuntime.availableProcessors()
// local[*] estimates the number of cores on the machine; local[N] uses exactly N threads.
val threadCount = if (threads == "*") localCpuCount else threads.toInt
val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true)
val backend = new LocalBackend(scheduler, threadCount)
scheduler.initialize(backend)
scheduler case LOCAL_N_FAILURES_REGEX(threads, maxFailures) =>
def localCpuCount = Runtime.getRuntime.availableProcessors()
// local[*, M] means the number of cores on the computer with M failures
// local[N, M] means exactly N threads with M failures
val threadCount = if (threads == "*") localCpuCount else threads.toInt
val scheduler = new TaskSchedulerImpl(sc, maxFailures.toInt, isLocal = true)
val backend = new LocalBackend(scheduler, threadCount)
scheduler.initialize(backend)
scheduler case SPARK_REGEX(sparkUrl) =>
val scheduler = new TaskSchedulerImpl(sc)
val masterUrls = sparkUrl.split(",").map("spark://" + _)
val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)
scheduler.initialize(backend)
scheduler case LOCAL_CLUSTER_REGEX(numSlaves, coresPerSlave, memoryPerSlave) =>
// Check to make sure memory requested <= memoryPerSlave. Otherwise Spark will just hang.
val memoryPerSlaveInt = memoryPerSlave.toInt
if (sc.executorMemory > memoryPerSlaveInt) {
throw new SparkException(
"Asked to launch cluster with %d MB RAM / worker but requested %d MB/worker".format(
memoryPerSlaveInt, sc.executorMemory))
} val scheduler = new TaskSchedulerImpl(sc)
val localCluster = new LocalSparkCluster(
numSlaves.toInt, coresPerSlave.toInt, memoryPerSlaveInt)
val masterUrls = localCluster.start()
val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)
scheduler.initialize(backend)
backend.shutdownCallback = (backend: SparkDeploySchedulerBackend) => {
localCluster.stop()
}
scheduler case "yarn-standalone" | "yarn-cluster" =>
if (master == "yarn-standalone") {
logWarning(
"\"yarn-standalone\" is deprecated as of Spark 1.0. Use \"yarn-cluster\" instead.")
}
val scheduler = try {
val clazz = Class.forName("org.apache.spark.scheduler.cluster.YarnClusterScheduler")
val cons = clazz.getConstructor(classOf[SparkContext])
cons.newInstance(sc).asInstanceOf[TaskSchedulerImpl]
} catch {
// TODO: Enumerate the exact reasons why it can fail
// But irrespective of it, it means we cannot proceed !
case e: Exception => {
throw new SparkException("YARN mode not available ?", e)
}
}
val backend = try {
val clazz =
Class.forName("org.apache.spark.scheduler.cluster.YarnClusterSchedulerBackend")
val cons = clazz.getConstructor(classOf[TaskSchedulerImpl], classOf[SparkContext])
cons.newInstance(scheduler, sc).asInstanceOf[CoarseGrainedSchedulerBackend]
} catch {
case e: Exception => {
throw new SparkException("YARN mode not available ?", e)
}
}
scheduler.initialize(backend)
scheduler case "yarn-client" =>
val scheduler = try {
val clazz =
Class.forName("org.apache.spark.scheduler.cluster.YarnClientClusterScheduler")
val cons = clazz.getConstructor(classOf[SparkContext])
cons.newInstance(sc).asInstanceOf[TaskSchedulerImpl] } catch {
case e: Exception => {
throw new SparkException("YARN mode not available ?", e)
}
} val backend = try {
val clazz =
Class.forName("org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend")
val cons = clazz.getConstructor(classOf[TaskSchedulerImpl], classOf[SparkContext])
cons.newInstance(scheduler, sc).asInstanceOf[CoarseGrainedSchedulerBackend]
} catch {
case e: Exception => {
throw new SparkException("YARN mode not available ?", e)
}
} scheduler.initialize(backend)
scheduler case mesosUrl @ MESOS_REGEX(_) =>
MesosNativeLibrary.load()
val scheduler = new TaskSchedulerImpl(sc)
val coarseGrained = sc.conf.getBoolean("spark.mesos.coarse", false)
val url = mesosUrl.stripPrefix("mesos://") // strip scheme from raw Mesos URLs
val backend = if (coarseGrained) {
new CoarseMesosSchedulerBackend(scheduler, sc, url)
} else {
new MesosSchedulerBackend(scheduler, sc, url)
}
scheduler.initialize(backend)
scheduler case SIMR_REGEX(simrUrl) =>
val scheduler = new TaskSchedulerImpl(sc)
val backend = new SimrSchedulerBackend(scheduler, sc, simrUrl)
scheduler.initialize(backend)
scheduler case _ =>
throw new SparkException("Could not parse Master URL: '" + master + "'")
}
}
}

主要的逻辑从line 20开始。主要通过传入的Master URL来生成Scheduler 和 Scheduler backend。对于常见的Standalone的部署方式,我们看一下是生成的Scheduler 和 Scheduler backend:

      case SPARK_REGEX(sparkUrl) =>
val scheduler = new TaskSchedulerImpl(sc)
val masterUrls = sparkUrl.split(",").map("spark://" + _)
val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)
scheduler.initialize(backend)
scheduler

org.apache.spark.scheduler.TaskSchedulerImpl通过一个SchedulerBackend管理了所有的cluster的调度;它主要实现了通用的逻辑。对于系统刚启动时,需要理解两个接口,一个是initialize,一个是start。这个也是在SparkContext初始化时调用的:

  def initialize(backend: SchedulerBackend) {
this.backend = backend
// temporarily set rootPool name to empty
rootPool = new Pool("", schedulingMode, 0, 0)
schedulableBuilder = {
schedulingMode match {
case SchedulingMode.FIFO =>
new FIFOSchedulableBuilder(rootPool)
case SchedulingMode.FAIR =>
new FairSchedulableBuilder(rootPool, conf)
}
}
schedulableBuilder.buildPools()
}

由此可见,初始化主要是SchedulerBackend的初始化,它主要时通过集群的配置来获得调度模式,现在支持的调度模式是FIFO和公平调度,默认的是FIFO。

// default scheduler is FIFO
private val schedulingModeConf = conf.get("spark.scheduler.mode", "FIFO")
val schedulingMode: SchedulingMode = try {
SchedulingMode.withName(schedulingModeConf.toUpperCase)
} catch {
case e: java.util.NoSuchElementException =>
throw new SparkException(s"Unrecognized spark.scheduler.mode: $schedulingModeConf")
}

start的实现如下:

  override def start() {
backend.start() if (!isLocal && conf.getBoolean("spark.speculation", false)) {
logInfo("Starting speculative execution thread")
import sc.env.actorSystem.dispatcher
sc.env.actorSystem.scheduler.schedule(SPECULATION_INTERVAL milliseconds,
SPECULATION_INTERVAL milliseconds) {
Utils.tryOrExit { checkSpeculatableTasks() }
}
}
}

主要是backend的启动。对于非本地模式,并且设置了spark.speculation为true,那么对于指定时间未返回的task将会启动另外的task来执行。其实对于一般的应用,这个的确可能会减少任务的执行时间,但是也浪费了集群的计算资源。因此对于离线应用来说,这个设置是不推荐的。

org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend是Standalone模式的SchedulerBackend。它的定义如下:

private[spark] class SparkDeploySchedulerBackend(
scheduler: TaskSchedulerImpl,
sc: SparkContext,
masters: Array[String])
extends CoarseGrainedSchedulerBackend(scheduler, sc.env.actorSystem)
with AppClientListener
with Logging {

看一下它的start:

 override def start() {
super.start() // The endpoint for executors to talk to us
val driverUrl = "akka.tcp://%s@%s:%s/user/%s".format(
SparkEnv.driverActorSystemName,
conf.get("spark.driver.host"),
conf.get("spark.driver.port"),
CoarseGrainedSchedulerBackend.ACTOR_NAME)
val args = Seq(driverUrl, "{{EXECUTOR_ID}}", "{{HOSTNAME}}", "{{CORES}}", "{{WORKER_URL}}")
val extraJavaOpts = sc.conf.getOption("spark.executor.extraJavaOptions")
.map(Utils.splitCommandString).getOrElse(Seq.empty)
val classPathEntries = sc.conf.getOption("spark.executor.extraClassPath").toSeq.flatMap { cp =>
cp.split(java.io.File.pathSeparator)
}
val libraryPathEntries =
sc.conf.getOption("spark.executor.extraLibraryPath").toSeq.flatMap { cp =>
cp.split(java.io.File.pathSeparator)
} // Start executors with a few necessary configs for registering with the scheduler
val sparkJavaOpts = Utils.sparkJavaOpts(conf, SparkConf.isExecutorStartupConf)
val javaOpts = sparkJavaOpts ++ extraJavaOpts
val command = Command("org.apache.spark.executor.CoarseGrainedExecutorBackend",
args, sc.executorEnvs, classPathEntries, libraryPathEntries, javaOpts)
val appDesc = new ApplicationDescription(sc.appName, maxCores, sc.executorMemory, command,
sc.ui.appUIAddress, sc.eventLogger.map(_.logDir)) client = new AppClient(sc.env.actorSystem, masters, appDesc, this, conf)
client.start() waitForRegistration()
}

接下来,我们将对TaskScheduler,SchedulerBackend和DAG Scheduler进行详解,来逐步揭开他们的神秘面纱。

Spark技术内幕之任务调度:从SparkContext开始的更多相关文章

  1. Spark技术内幕:Stage划分及提交源码分析

    http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...

  2. Spark技术内幕: Task向Executor提交的源码解析

    在上文<Spark技术内幕:Stage划分及提交源码分析>中,我们分析了Stage的生成和提交.但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑, ...

  3. Spark技术内幕: Task向Executor提交的源代码解析

    在上文<Spark技术内幕:Stage划分及提交源代码分析>中,我们分析了Stage的生成和提交.可是Stage的提交,仅仅是DAGScheduler完毕了对DAG的划分,生成了一个计算拓 ...

  4. Spark技术内幕:Master的故障恢复

    Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现  详细阐述了使用ZK实现的Master的HA,那么Master是如何快速故障恢复的呢? 处于 ...

  5. Spark技术内幕:Executor分配详解

    当用户应用new SparkContext后,集群就会为在Worker上分配executor,那么这个过程是什么呢?本文以Standalone的Cluster为例,详细的阐述这个过程.序列图如下: 1 ...

  6. Spark技术内幕:Client,Master和Worker 通信源码解析

    http://blog.csdn.net/anzhsoft/article/details/30802603 Spark的Cluster Manager可以有几种部署模式: Standlone Mes ...

  7. 我的第一本著作:Spark技术内幕上市!

    现在各大网站销售中! 京东:http://item.jd.com/11770787.html 当当:http://product.dangdang.com/23776595.html 亚马逊:http ...

  8. Spark技术内幕:Client,Master和Worker 通信源代码解析

    Spark的Cluster Manager能够有几种部署模式: Standlone Mesos YARN EC2 Local 在向集群提交计算任务后,系统的运算模型就是Driver Program定义 ...

  9. Spark技术内幕:Stage划分及提交源代码分析

    当触发一个RDD的action后.以count为例,调用关系例如以下: org.apache.spark.rdd.RDD#count org.apache.spark.SparkContext#run ...

随机推荐

  1. ●BZOJ 2693 jzptab

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 莫比乌斯反演 先看看这个题,BZOJ 2154 Crash的数字表格,本题的升 ...

  2. ●HDU 3507 Print Article

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=3507 题解: 斜率优化DP 一个入门题,就不给题解了,网上的好讲解很多的.   这里就只提一个小问题吧( ...

  3. ●BZOJ 4310 跳蚤

    ●赘述题目 给出一个字符串,要求分成k个子串,然后求出每个子串的字典序最大的子串(我称它为子子串),要使这k个子子串中的字典序最大的那个串(即魔力串)最小.输出该魔力串. (本题个人感觉很好,比较综合 ...

  4. 2015 多校联赛 ——HDU5360(贪心+优先队列)

    Sample Input 4 8 4 1 3 2 2 1 0 3 5 3 6 4 2 1 7 6 8 3 3 2 0 5 0 3 6 4 5 2 7 7 6 7 6 8 2 2 3 3 3 0 0 2 ...

  5. Python之作业购物车

    作业之购物车优化 购物车优化要求如下: 用户入口: 启动程序后,输入用户名密码后,如果是第一次登录,让用户输入工资,然后打印商品列表 允许用户根据商品编号购买商品 用户选择商品后,检测余额是否够,够就 ...

  6. 最新版-MySQL8.0 安装 - 改密码 之坑

    1. 需求背景 最近需要在一台性能一般的电脑上使用数据库,所以决定安装MySQL数据库,以前安装都是使用WorkBench自动化安装,但安装过程太慢占用空间过大,于是下载zip压缩包.之所以选择选择M ...

  7. git报错:'fatal:remote origin already exists

    git报错:'fatal:remote origin already exists'怎么处理?附上git常用操作以及说明.   git添加远程库的时候有可能出现如下的错误, 怎么解决? 只要两步: 1 ...

  8. Linux平台安装MongoDB

    MongoDB 提供了 linux 各发行版本 64 位的安装包,你可以在官网下载安装包. 下载地址:https://www.mongodb.com/download-center#community ...

  9. Lintcode392 Is Subsequence solution 题解

    [题目描述] Given a string s and a string t, check if s is subsequence of t. You may assume that there is ...

  10. 读书学习-Python--描述符(python3)

    转自我的知乎文章(https://zhuanlan.zhihu.com/p/32487852) 何为描述符?描述符就是实现了__get__.__set__和__delete__三者中任意一个的类.是用 ...