4537: [Hnoi2016]最小公倍数

题意:一张边权无向图,多组询问u和v之间有没有一条a最大为a',b最大为b'的路径(不一定是简单路径)


首先想到暴力做法,题目要求就是判断u和v连通,并查集把\(a<a' \land b<b'\)的边加入

然后想了一下特殊的莫队,不可做。不能按权值分块,因为同一个权值会有很多边,并且删除操作不好处理

发现这其实是一个偏序关系,但是无法用cdq分治,因为它要求所有满足偏序小的元素同时存在于某种组织形式中

使用分块

权值用\((a,b)\)表示

边按a排序,然后分块。对于每一块i,处理a'在这一块中的询问。这时候之前块的\(a<a'\)这一个关系一定满足,按b排序后也满足\(b<b'\)了

块i中还有一些满足的,最多\(\sqrt{m}\) 暴力加入然后撤销就可以了

不路径压缩的并查集,启发式合并的话复杂度log

注意是边权

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=2e5+5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int n, m, Q, u, v, x, y, block, bn, top, ans[N];
struct meow {
int u, v, a, b, id;
inline void print() {printf("%d %d %d %d\n", u, v, a, b);}
} e[N], q[N], a[N];
inline bool cmpa(const meow &a, const meow &b) {return a.a == b.a ? a.b < b.b : a.a < b.a;}
inline bool cmpb(const meow &a, const meow &b) {return a.b == b.b ? a.a < b.a : a.b < b.b;} namespace ufs {
struct meow{int fa, maxa, maxb, size;} t[N];
struct info{int x, y; meow a, b; } st[N];
inline int find(int x) {return x == t[x].fa ? x : find(t[x].fa);}
inline void ini() {for(int i=1; i<=n; i++) t[i] = (meow){i, -1, -1, 1}; }
inline void link(int id) { //printf("link %d\n", id);
int x = find(e[id].u), y = find(e[id].v);
st[++top] = (info){x, y, t[x], t[y]};
if(x==y) {
t[x].maxa = max(t[x].maxa, e[id].a);
t[x].maxb = max(t[x].maxb, e[id].b);
return;
}
if(t[x].size < t[y].size) swap(x, y);
t[y].fa = x;
t[x].maxa = max(max(t[y].maxa, t[x].maxa), e[id].a);
t[x].maxb = max(max(t[y].maxb, t[x].maxb), e[id].b);
t[x].size += t[y].size;
}
inline void recov() {
t[ st[top].x ] = st[top].a, t[ st[top].y ] = st[top].b;
top--;
}
inline bool check(int id) {
int x = find(a[id].u), y = find(a[id].v);
//printf("check %d %d %d %d %d %d\n", id, x, y, t[x].maxa, t[x].maxb, t[x].size);
return x == y && t[x].maxa == a[id].a && t[x].maxb == a[id].b;
}
} using ufs::st; void solve() {
sort(e+1, e+m+1, cmpa); sort(q+1, q+Q+1, cmpa);
block = sqrt(m); bn = (m-1)/block+1;
for(int i=1; i<=bn; i++) { //printf("\n---------- %d\n", i);
int l = (i-1)*block+1, r = i==bn ? m : i*block; //printf("[%d, %d]\n", l, r);
int p=0;
for(int i=1; i<=Q; i++)
if(q[i].a >= e[l].a && (r==m || q[i].a < e[r+1].a) ) a[++p] = q[i]; sort(e+1, e+l, cmpb); sort(a+1, a+p+1, cmpb);
//for(int i=1; i<=p; i++) a[i].print();
int now=1;
ufs::ini();
for(int i=1; i<=p; i++) {
while(now < l && e[now].b <= a[i].b) ufs::link(now), now++;
top=0;
for(int j=l; j<=r; j++)
if(e[j].a <= a[i].a && e[j].b <= a[i].b) ufs::link(j);// printf("j %d\n", j);
ans[ a[i].id ] = ufs::check(i);
while(top) ufs::recov();
}
}
for(int i=1; i<=Q; i++) puts(ans[i] ? "Yes" : "No");
}
int main() {
//freopen("in", "r", stdin);
freopen("multiple.in", "r", stdin);
freopen("multiple.out", "w", stdout);
n=read(); m=read();
for(int i=1; i<=m; i++) u=read(), v=read(), x=read(), y=read(), e[i] = (meow){u, v, x, y, i};
Q=read();
for(int i=1; i<=Q; i++) u=read(), v=read(), x=read(), y=read(), q[i] = (meow){u, v, x, y, i};
solve();
}

BZOJ 4537: [Hnoi2016]最小公倍数 [偏序关系 分块]的更多相关文章

  1. bzoj 4537: [Hnoi2016]最小公倍数 分块+并查集

    题目大意: 给定一张n个点m条边的无向图,每条边有两种权.每次询问某两个点之间是否存在一条路径上的边的两种权的最大值分别等于给定值. n,q <= 50000. m <= 100000 题 ...

  2. bzoj 4537 HNOI2016 最小公倍数

    Description 给定一张N个顶点M条边的无向图(顶点编号为1,2,-,n),每条边上带有权值.所有权值都可以分解成2^a*3^b的形式.现在有q个询问,每次询问给定四个参数u.v.a和b,请你 ...

  3. 4537: [Hnoi2016]最小公倍数

    Description 给定一张N个顶点M条边的无向图(顶点编号为1,2,…,n),每条边上带有权值.所有权值都可以分解成2^a*3^b的形式.现在有q个询问,每次询问给定四个参数u.v.a和b,请你 ...

  4. [BZOJ4537][HNOI2016]最小公倍数(分块+并查集)

    4537: [Hnoi2016]最小公倍数 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1687  Solved: 607[Submit][Stat ...

  5. [BZOJ4537][Hnoi2016]最小公倍数 奇怪的分块+可撤销并查集

    4537: [Hnoi2016]最小公倍数 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1474  Solved: 521[Submit][Stat ...

  6. 【BZOJ4537】[Hnoi2016]最小公倍数 分块

    [BZOJ4537][Hnoi2016]最小公倍数 Description 给定一张N个顶点M条边的无向图(顶点编号为1,2,…,n),每条边上带有权值.所有权值都可以分解成2^a*3^b的形式.现在 ...

  7. 【LG3247】[HNOI2016]最小公倍数

    [LG3247][HNOI2016]最小公倍数 题面 洛谷 题解 50pts 因为拼凑起来的部分分比较多,所以就放一起了. 以下设询问的\(a,b\)为\(A,B\), 复杂度\(O(nm)\)的:将 ...

  8. BZOJ 3343: 教主的魔法(分块+二分查找)

    BZOJ 3343: 教主的魔法(分块+二分查找) 3343: 教主的魔法 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1172  Solved:  ...

  9. [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)

    [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块) 题面 给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_ ...

随机推荐

  1. 三分钟使用webpack-dev-sever搭建一个服务器

    webpack-dev-server是一个小型的Node.js Express服务器,我们可以通过它搭建一个本地服务器,并且实现文件热更新; 1.切换到你的目录下对项目进行初始化 npm init 一 ...

  2. Navicat连接阿里云Mysql遇到的的坑

    连上去那一刻,心态真是起飞了

  3. java 数据类型间的转换

    byte a = (byte)129; 129已经超过了byte数据类型的存储上限,所以需要在值的前面加括号需要转换的数据类型名. 但是从高往低转的时候数值精度会有丢失; 所以最后结果为 a = -1 ...

  4. 学习Lucene、solr之前应当了解的一些术语

    一些简单易理解术语,例如:词条搜索.语义信息.搜索引擎 搜索引擎分类:全文搜索(百度.谷歌).目录搜索.元搜索.垂直搜索 元搜索例子:360综合搜索.搜魅网(someta 集合了百度.google.搜 ...

  5. 用Dedecms5.7的arclist标签调用文章内容

    arclist标签调用文章内容 首先大家都知道在Dedecms中,list标签是可以调用文章内容的,调用格式就不再此冗述了.从我个人来说,我非常不喜欢用list标签调用,有可能我会尽量使用arclis ...

  6. 第一章 用HTML5中的结构元素构建网站

    1.当一个容器需要直接定义样式或通过脚本定义行为时,推荐使用div元素而非section元素. 2.section是需要标题的,而nav或aside没有标题也是可以的. 3.html5轮廓工具 htt ...

  7. MySQL主从复制的配置

    环境 操作系统:CentOS-6.6-x86_64-bin-DVD1.iso MySQL版本:mysql-5.6.26.tar.gz 主节点IP:192.168.1.205     主机名:edu-m ...

  8. Vue.js的坑

    参考网址:http://cn.vuejs.org/v2/guide/components.html 1.camelCase vs. kebab-case HTML 特性不区分大小写.当使用非字符串模版 ...

  9. vue不是内部或外部命令,配置一个Path系统变量就可以解决

    作为一个vue小白,最近为vue安装真是操碎了心.无论怎么查找网上的教程,还是解决不了"vue不是内部或外部的命令"诸如此类的问题.好在功夫不负有心人,终于在多次的试验下,成功解决 ...

  10. Python3基础知识之字符串

    1.运算符 * >>> b=a*5>>> b'pythonpythonpythonpythonpython'>>> b.replace('t',' ...