【动态规划】 EditDistance
思路参考: https://www.cnblogs.com/littlepanpc/p/7895810.html
代码参考:https://leetcode.com/problems/edit-distance/discuss/226308/C-Dynammic-programming-solution-Time%3AO(mn)-4ms-Beat-100
#define min(x, y) (((x) < (y)) ? (x) : (y))
int minDistance(char* word1, char* word2) {
int len1 = strlen(word1);
int len2 = strlen(word2);
// printf("%d %d", len1, len2);
int dp[len1+][len2+];
int i;
for(i = ; i <= len1; i++){
for(int j = ; j <= len2; j++){
if(i == ){
dp[i][j] = j;
continue;
}
if(j == ) {
dp[i][j] = i;
continue;
}
if(word1[i-]== word2[j-]) dp[i][j] = dp[i-][j-];
else{
dp[i][j] = + min(min(dp[i-][j], dp[i][j-]), dp[i-][j-]);
}
}
}
return dp[len1][len2];
}
【动态规划】 EditDistance的更多相关文章
- EditDistance,求两个字符串最小编辑距离,动态规划
问题描述: 题目描述Edit DistanceGiven two words word1 and word2, find the minimum number of steps required to ...
- Java动态规划
1. 介绍 动态规划典型的被用于优化递归算法,因为它们倾向于以指数的方式进行扩展.动态规划主要思想是将复杂问题(带有许多递归调用)分解为更小的子问题,然后将它们保存到内存中,这样我们就不必在每次使用它 ...
- LeetCode 动态规划
动态规划:适用于子问题不是独立的情况,也就是各子问题包含子子问题,若用分治算法,则会做很多不必要的工作,重复的求解子问题,动态规划对每个子子问题,只求解一次将其结果保存在一张表中,从而避免重复计算. ...
- [LeetCode] 72. 编辑距离 ☆☆☆☆☆(动态规划)
https://leetcode-cn.com/problems/edit-distance/solution/bian-ji-ju-chi-mian-shi-ti-xiang-jie-by-labu ...
- 6专题总结-动态规划dynamic programming
专题6--动态规划 1.动态规划基础知识 什么情况下可能是动态规划?满足下面三个条件之一:1. Maximum/Minimum -- 最大最小,最长,最短:写程序一般有max/min.2. Yes/N ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
随机推荐
- 升级node版本
一.升级方法: 1.产看node版本,没安装的请先安装: $ node -v 2.清楚node缓存: $ sudo npm cache clean -f 3.安装node版本管理工具'n'; $ su ...
- 强化学习(九)Deep Q-Learning进阶之Nature DQN
在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Learning ...
- IntelliJ IDEA如何激活?
本文使用的IDEA的版本是:14.0.3 下载IDEA授权服务器(下载地址见最后),并解压,打开解压后的IntelliJIDEALicenseServer目录,可以看到如下的两个文件: Intelli ...
- Django学习之十一:真正理解Django的路由分发和反解url原理
目录 URL Dispatcher 简介 模式概念 对比URLPattern 与 URLResolver (多态的体现) 构建子路由几种方式 反解url算法逻辑 URL Dispatcher 简介 d ...
- vuex的用法
https://segmentfault.com/a/1190000015782272
- 前端入门21-JavaScript的ES6新特性
声明 本篇内容全部摘自阮一峰的:ECMAScript 6 入门 阮一峰的这本书,我个人觉得写得挺好的,不管是描述方面,还是例子,都讲得挺通俗易懂,每个新特性基本都还会跟 ES5 旧标准做比较,说明为什 ...
- 【土旦】在vue filters中 优雅的使用对象的key、value来替换 if switch多重判断简化流程
前言 之前写过滤器的时候都是 用 if switch 来进行值的判断 返回对应的值, 在没去百度搜索之前都是都是这样写的 ) { return "支付成功"; } ) { retu ...
- Android-蓝牙自动配对与隐藏对话框
一.概述 本次分析是基于Android7.0的源码. 二.自动配对分析过程 首先,我们分析一下源码的自动配对过程,packages/apps/Settings/src/com/android/sett ...
- Java初学习-常见单词
implements 实行/实现 用于实现接口(interface) extends 延伸/扩展 用于类的继承 container 容 ...
- 2D射影几何和变换
阅读<计算机视觉中的多视图集合> 2D射影几何和变换 2D射影平面 本章的关键是理解线和点的对偶性.从射影平面模型出发,IP^2^内的点(a, b ,c)由IP^3^空间中一条过原点的射线 ...