Hadoop与分布式数据处理 Spark VS Hadoop有哪些异同点?
Spark是一个开源的通用并行分布式计算框架,由加州大学伯克利分校的AMP实验室开发,支持内存计算、多迭代批量处理、即席查询、流处理和图计算等多种范式。Spark内存计算框架适合各种迭代算法和交互式数据分析,能够提升大数据处理的实时性和准确性,现已逐渐获得很多企业的支持,如阿里巴巴、百度、网易、英特尔等公司。
针对以下几个问题来深入的学习
1、 Spark VSHadoop有哪些异同点?
Hadoop:分布式批处理计算,强调批处理,常用于数据挖掘、分析
Spark:是一个基于内存计算的开源的集群计算系统,目的是让数据分析更加快速, Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。
尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。通过名为Mesos的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms,Machines,and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。
虽然 Spark 与 Hadoop 有相似之处,但它提供了具有有用差异的一个新的集群计算框架。首先,Spark 是为集群计算中的特定类型的工作负载而设计,即那些在并行操作之间重用工作数据集(比如机器学习算法)的工作负载。为了优化这些类型的工作负载,Spark 引进了内存集群计算的概念,可在内存集群计算中将数据集缓存在内存中,以缩短访问延迟.
在大数据处理方面相信大家对hadoop已经耳熟能详,基于GoogleMap/Reduce来实现的Hadoop为开发者提供了map、reduce原语,使并行批处理程序变得非常地简单和优美。Spark提供的数据集操作类型有很多种,不像Hadoop只提供了Map和Reduce两种操作。比如map,filter, flatMap,sample, groupByKey, reduceByKey, union,join, cogroup,mapValues, sort,partionBy等多种操作类型,他们把这些操作称为Transformations。同时还提供Count,collect,
reduce, lookup, save等多种actions。这些多种多样的数据集操作类型,给上层应用者提供了方便。各个处理节点之间的通信模型不再像Hadoop那样就是唯一的Data Shuffle一种模式。用户可以命名,物化,控制中间结果的分区等。可以说编程模型比Hadoop更灵活.
2、Spark在容错性方面是否比其他工具更有优越性?
从Spark的论文《Resilient Distributed Datasets: AFault-TolerantAbstraction for In-Memory Cluster Computing》中没看出容错性做的有多好。倒是提到了分布式数据集计算,做checkpoint的两种方式,一个是checkpoint data,一个是loggingthe updates。貌似Spark采用了后者。但是文中后来又提到,虽然后者看似节省存储空间。但是由于数据处理模型是类似DAG的操作过程,由于图中的某个节点出错,由于lineage
chains的依赖复杂性,可能会引起全部计算节点的重新计算,这样成本也不低。他们后来说,是存数据,还是存更新日志,做checkpoint还是由用户说了算吧。相当于什么都没说,又把这个皮球踢给了用户。所以我看就是由用户根据业务类型,衡量是存储数据IO和磁盘空间的代价和重新计算的代价,选择代价较小的一种策略。取代给中间结果进行持久化或建立检查点,Spark会记住产生某些数据集的操作序列。因此,当一个节点出现故障时,Spark会根据存储信息重新构造数据集。他们认为这样也不错,因为其他节点将会帮助重建。
3、Spark对于数据处理能力和效率有哪些特色?
Spark提供了高的性能和大数据处理能力,使得用户可以快速得到反馈体验更好。另一类应用是做数据挖掘,因为Spark充分利用内存进行缓存,利用DAG消除不必要的步骤,所以比较合适做迭代式的运算。而有相当一部分机器学习算法是通过多次迭代收敛的算法,所以适合用Spark来实现。我们把一些常用的算法并行化用Spark实现,可以从R语言中方便地调用,降低了用户进行数据挖掘的学习成本。
Spark配有一个流数据处理模型,与Twitter的 Storm框架相比,Spark采用了一种有趣而且独特的办法。Storm基本上是像是放入独立事务的管道,在其中事务会得到分布式的处理。相反,Spark采用一个模型收集事务,然后在短时间内(我们假设是5秒)以批处理的方式处理事件。所收集的数据成为他们自己的RDD,然后使用Spark应用程序中常用的一组进行处理。作者声称这种模式是在缓慢节点和故障情况下会更加稳健,而且5秒的时间间隔通常对于大多数应用已经足够快了。这种方法也很好地统一了流式处理与非流式处理部分。
总结
这几天在看Hadoop权威指南、hbase权威指南、hive权威指南、大规模分布式存储系统、zoopkeeper、大数据互联网大规模数据挖掘与分布式处理等书同时补充,能静下心来好好的完整的看完一本书,是相当不错的。
Hadoop与分布式数据处理 Spark VS Hadoop有哪些异同点?的更多相关文章
- Hadoop笔记系列 一 用Hadoop进行分布式数据处理(1)
学习资料参考地址: 1.http://blog.csdn.net/zhoudaxia/article/details/8801769 1.先说说什么是Hadoop? 个人理解:一个分布式文件存储系统+ ...
- 对于spark以及hadoop的几个疑问(转)
Hadoop是啥?spark是啥? spark能完全取代Hadoop吗? Hadoop和Spark属于哪种计算计算模型(实时计算.离线计算)? 学习Hadoop和spark,哪门语言好? 哪里能找到比 ...
- [hadoop] hadoop-all-in-one-伪分布式安装
hadoop伪分布式-all-in-one安装 #查看hadoop 版本 [root@hadoop-allinone-200-123 bin]# pwd /wdcloud/app/hadoop-2.7 ...
- 基于Centos搭建 Hadoop 伪分布式环境
软硬件环境: CentOS 7.2 64 位, OpenJDK- 1.8,Hadoop- 2.7 关于本教程的说明 云实验室云主机自动使用 root 账户登录系统,因此本教程中所有的操作都是以 roo ...
- Hadoop完全分布式模式安装部署
在Linux上搭建Hadoop系列:1.Hadoop环境搭建流程图2.搭建Hadoop单机模式3.搭建Hadoop伪分布式模式4.搭建Hadoop完全分布式模式 注:此教程皆是以范例讲述的,当然你可以 ...
- 基于Hadoop伪分布式集群搭建Spark
一.前置安装 1)JDK 2)Hadoop伪分布式集群 二.Scala安装 1)解压Scala安装包 2)环境变量 SCALA_HOME = C:\ProgramData\scala-2.10.6 P ...
- Spark和hadoop的关系
1. Spark VSHadoop有哪些异同点? Hadoop:分布式批处理计算,强调批处理,常用于数据挖掘和数据分析. Spark:是一个基于内存计算的开源的集群计算系统,目的是让数据分析更加快速, ...
- Spark与Hadoop计算模型的比较分析
http://tech.it168.com/a2012/0401/1333/000001333287.shtml 最近很多人都在讨论Spark这个貌似通用的分布式计算模型,国内很多机器学习相关工作者都 ...
- 大数据 --> Spark与Hadoop对比
Spark与Hadoop对比 什么是Spark Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法 ...
随机推荐
- 第三届“百越杯”福建省高校网络空间安全大赛_Do you know upload?
题目在i春秋的ctf训练营 既然是上传,那就直接抓包 二话不说上来先给个00截断传个一句话助助兴 直接就成功了.... 赶紧操起菜刀去连接 进去之后发现ctf.sql是个空文件,那么flag应该在数据 ...
- snmp爆破(python脚本)
snmp用来获取信息,然后利用获取的信息来进一步的渗透. 命令行有 snmpwalk -v 2c -c public ip system -c是密码,默认的密码是public 利用工具可以找windo ...
- [HAOI 2010]软件安装
Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...
- [HNOI 2006]鬼谷子的钱袋
Description 鬼谷子非常聪明,正因为这样,他非常繁忙,经常有各诸侯车的特派员前来向他咨询时政.有一天,他在咸阳游历的时候,朋友告诉他在咸阳最大的拍卖行(聚宝商行)将要举行一场拍卖会,其中有一 ...
- [Codeforces 505C]Mr. Kitayuta, the Treasure Hunter
Description The Shuseki Islands are an archipelago of 30001 small islands in the Yutampo Sea. The is ...
- LGTB 与序列
LGTB 有一个长度为N 的序列A,现在他想构造一个新的长度为N 的序列B,使得B 中的任意两个数都 互质. 并且他要使ai与bi对应项之差最小 请输出最小值 输入 第一行包含一个数N 代表序列初始长 ...
- 习题7-1 uva 208(剪枝)
题意:按最小字典序输出a到b 的所有路径. 思路:先处理出个点到目标点b的情况(是否能到达),搜索即可. 最开始我只判了a能否到b,然后给我的是WA,然后看了半天感觉思路没什么问题,然后把所有点都处理 ...
- day4 liaoxuefeng---函数
一.调用函数: 调用abs函数:取绝对值函数, >>> abs(100) 100 >>> abs(-20) 20 >>> abs(12.34) 1 ...
- Python中byte与str
原文传送门:请点击 现在计算机中,在内存中采用unicode编码方式. 可以看到上图中,字节型数据t并没有像想象中的一样显示0,1字符串.显示仍然是b,这是因为t是采用utf-8来编码,而utf-8与 ...
- Python中文件的操作
文件的操作介绍 文件打开的方法 主要有两种: no with 格式:open(file, mode='r', buffering=-1, encoding=None, errors=None, new ...