BZOJ_3585_mex && BZOJ_3339_Rmq Problem_莫队+分块

Description

  有一个长度为n的数组{a1,a2,...,an}。m次询问,每次询问一个区间内最小没有出现过的自然数。

Input

  第一行n,m。
  第二行为n个数。
  从第三行开始,每行一个询问l,r。

Output

  一行一个数,表示每个询问的答案。

Sample Input

5 5
2 1 0 2 1
3 3
2 3
2 4
1 2
3 5

Sample Output

1
2
3
0
3

HINT

数据规模和约定
  对于100%的数据:
  1<=n,m<=200000
  0<=ai<=109
  1<=l<=r<=n

  对于30%的数据:
  1<=n,m<=1000


我的做法比较$sb$ 也比较裸,只能处理离线不修改的。

询问莫队,把权值分块,找到第一个不满的块,暴力查即可。

好像主席树也能做。

主席树链接http://www.cnblogs.com/suika/p/9062412.html

代码(3585&&3339):

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd() {
register int x=0;
register char s=nc();
while(s<'0'||s>'9')s=nc();
while(s>='0'&&s<='9')x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
#define N 200050
int pos[N],L[N],R[N],size,block,n,c[N],ans[N],h[N],ansblo[N],m;
struct A {
int l,r,id;
}q[N];
bool cmp(const A &x,const A &y) {
if(pos[x.l]!=pos[y.l]) return pos[x.l]<pos[y.l];
return x.r<y.r;
}
void del(int x) {
h[x]--;
if(h[x]==0) ansblo[pos[x]]--;
}
void add(int x) {
h[x]++;
if(h[x]==1) ansblo[pos[x]]++;
}
int query() {
int i,j;
for(i=1;i<=block;i++) {
if(ansblo[i]<R[i]-L[i]+1) {
for(j=L[i];j<=R[i];j++) {
if(!h[j]) return j;
}
}
}
return n;
}
void solve() {
int i,l=1,r=0;
for(i=1;i<=m;i++) {
while(l<q[i].l) del(c[l]),l++;
while(r>q[i].r) del(c[r]),r--;
while(l>q[i].l) l--,add(c[l]);
while(r<q[i].r) r++,add(c[r]);
ans[q[i].id]=query();
}
}
int main() {
n=rd(); m=rd();
int i,j;
size=sqrt(n); block=n/size;
for(i=1;i<=block;i++) {
L[i]=R[i-1]+1; R[i]=size*i;
for(j=L[i];j<=R[i];j++) {
c[j]=rd(); c[j]=min(c[j],n); pos[j]=i;
}
}
if(R[block]!=n) {
block++; L[block]=R[block-1]+1; R[block]=n;
for(i=L[block];i<=n;i++) {
c[i]=rd(); c[i]=min(c[i],n); pos[i]=block;
}
}
for(i=1;i<=m;i++) {
q[i].l=rd(); q[i].r=rd(); q[i].id=i;
}
L[1]=0; pos[0]=1;
sort(q+1,q+m+1,cmp);
solve();
for(i=1;i<=m;i++) printf("%d\n",ans[i]);
}

BZOJ_3585_mex && BZOJ_3339_Rmq Problem_莫队+分块的更多相关文章

  1. BZOJ_3585_mex && BZOJ_3339_Rmq Problem_主席树

    BZOJ_3585_mex && BZOJ_3339_Rmq Problem_主席树 Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区 ...

  2. Bzoj 3236: [Ahoi2013]作业 莫队,分块

    3236: [Ahoi2013]作业 Time Limit: 100 Sec  Memory Limit: 512 MBSubmit: 1113  Solved: 428[Submit][Status ...

  3. [BZOJ 3585] mex 【莫队+分块】

    题目链接:BZOJ - 3585 题目分析 区间mex,即区间中没有出现的最小自然数. 那么我们使用一种莫队+分块的做法,使用莫队维护当前区间的每个数字的出现次数. 然后求mex用分块,将权值分块(显 ...

  4. BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块

    BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块 Description Autumn和Bakser又在研究Gty的妹子序列了 ...

  5. BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块

    题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...

  6. CFGym101138D Strange Queries 莫队/分块

    正解:莫队/分块 解题报告: 传送门 ummm这题耗了我一天差不多然后我到现在还没做完:D 而同机房的大佬用了一个小时没有就切了?大概这就是大佬和弱鸡的差距趴QAQ 然后只是大概写下思想好了因为代码我 ...

  7. [BZOJ3585]mex(莫队+分块)

    显然可以离线主席树,这里用莫队+分块做.分块的一个重要思想是实现修改与查询时间复杂度的均衡,这里莫队和分块互相弥补. 考虑暴力的分块做法,首先显然大于n的数直接忽略,于是将值域分成sqrt(n)份,每 ...

  8. 小Z的袜子(莫队分块)题解

    小Z的袜子(hose) 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...

  9. 【CodeForces】700 D. Huffman Coding on Segment 哈夫曼树+莫队+分块

    [题目]D. Huffman Coding on Segment [题意]给定n个数字,m次询问区间[l,r]的数字的哈夫曼编码总长.1<=n,m,ai<=10^5. [算法]哈夫曼树+莫 ...

随机推荐

  1. box-sizing属性(指定针对元素的宽度与高度的计算方法)

    在css中,使用width属性与height属性来指定元素的宽度与高度.使用box-sizing属性,可以指定用width属性与height属性分别指定的宽度值与高度值是否包含元素的内部补白区域与边框 ...

  2. IT轮子系列(四)——使用Jquery+formdata对象 上传 文件

    前言 在MVC 中文件的上传,一般都采用控件: <h2>IT轮子四——文件上传</h2> <div> <input type="file" ...

  3. java死锁小例子

    package cn.com.io.threadDemo.ThreadSyn; /** * 通过两个属性值创建死锁 * 本程序通过两个线程各自锁定一个属性值,这样两个线程都无法结束,造成死锁 * @a ...

  4. 会话机器人Chatbot的相关资料

    Chatbot简介 竹间智能简仁贤:打破千篇一律的聊天机器人 | Chatbot的潮流 重点关注其中关于情感会话机器人的介绍 当你对我不满的时候我应该怎么应对,当你无聊,跟我说你很烦的时候,我应该怎么 ...

  5. node八-核心模块、包

    学会查API,远比会几个API更重要. 核心模块意义 -如果只是在服务器运行javascript代码,并没有多大意义,因为无法实现任何功能>读写文件.访问网络 -Node的用处在于它本身还提供可 ...

  6. Taurus.MVC 支持Asp.Net Core 的过程

    前言: 这些天,似乎.NET Core相关的新闻和文章经常在我眼前晃~~~ 昨天,微软又发布了.Core 2.1,又愰了一下,差点没亮瞎我的眼睛. 好吧,大概是上天给我的暗示,毕竟 CYQ.Data  ...

  7. SpringCloud实战-Ribbon客户端负载均衡

    前面我们已经完成了注册中心和服务提供者两个基础组件.接着介绍使用Spring Cloud Ribbon在客户端负载均衡的调用服务. ribbon 是一个客户端负载均衡器,可以简单的理解成类似于 ngi ...

  8. MySQL中查询时"Lost connection to MySQL server during query"报错的解决方案

    一.问题描述: mysql数据库查询时,遇到下面的报错信息: 二.原因分析: dw_user 表数据量比较大,直接查询速度慢,容易"卡死",导致数据库自动连接超时.... 三.解决 ...

  9. j2ee中spring的分布式事务实现及解决方案

    1 java事务类型 Java事务的类型有三种:JDBC事务.JTA(Java Transaction API)事务.容器事务. 常见的容器事务如Spring事务,容器事务主要是J2EE应用服务器提供 ...

  10. mybatis数据源源码剖析(JNDI、POOLED、UNPOOLED)

    http://blog.csdn.net/reliveit/article/details/47325189