Given a binary tree, return the values of its boundary in anti-clockwise direction starting from root. Boundary includes left boundary, leaves, and right boundary in order without duplicate nodes.

Left boundary is defined as the path from root to the left-most node. Right boundary is defined as the path from root to the right-most node. If the root doesn't have left subtree or right subtree, then the root itself is left boundary or right boundary. Note this definition only applies to the input binary tree, and not applies to any subtrees.

The left-most node is defined as a leaf node you could reach when you always firstly travel to the left subtree if exists. If not, travel to the right subtree. Repeat until you reach a leaf node.

The right-most node is also defined by the same way with left and right exchanged.

Example 1

Input:
1
\
2
/ \
3 4 Ouput:
[1, 3, 4, 2] Explanation:
The root doesn't have left subtree, so the root itself is left boundary.
The leaves are node 3 and 4.
The right boundary are node 1,2,4. Note the anti-clockwise direction means you should output reversed right boundary.
So order them in anti-clockwise without duplicates and we have [1,3,4,2].

Example 2

Input:
____1_____
/ \
2 3
/ \ /
4 5 6
/ \ / \
7 8 9 10 Ouput:
[1,2,4,7,8,9,10,6,3] Explanation:
The left boundary are node 1,2,4. (4 is the left-most node according to definition)
The leaves are node 4,7,8,9,10.
The right boundary are node 1,3,6,10. (10 is the right-most node).
So order them in anti-clockwise without duplicate nodes we have [1,2,4,7,8,9,10,6,3].

这道题给了一棵二叉树,让我们以逆时针的顺序来输出树的边界,按顺序分别为左边界,叶结点和右边界。题目中给的例子也很清晰的明白哪些算是边界上的结点。那么最直接的方法就是分别按顺序求出左边界结点,叶结点,和右边界结点。那么如何求的,对于树的操作肯定是用递归最简洁啊,所以可以写分别三个递归函数来分别求左边界结点,叶结点,和右边界结点。首先要处理根结点的情况,当根结点没有左右子结点时,其也是一个叶结点,那么一开始就将其加入结果 res 中,那么再计算叶结点的时候又会再加入一次,这样不对。所以判断如果根结点至少有一个子结点,才提前将其加入结果 res 中。然后再来看求左边界结点的函数,如果当前结点不存在,或者没有子结点,直接返回。否则就把当前结点值加入结果 res 中,然后看如果左子结点存在,就对其调用递归函数,反之如果左子结点不存在,那么对右子结点调用递归函数。而对于求右边界结点的函数就反过来了,如果右子结点存在,就对其调用递归函数,反之如果右子结点不存在,就对左子结点调用递归函数,注意在调用递归函数之后才将结点值加入结果 res,因为是需要按逆时针的顺序输出。最后就来看求叶结点的函数,没什么可说的,就是看没有子结点存在了就加入结果 res,然后对左右子结点分别调用递归即可,参见代码如下:

解法一:

class Solution {
public:
vector<int> boundaryOfBinaryTree(TreeNode* root) {
if (!root) return {};
vector<int> res;
if (root->left || root->right) res.push_back(root->val);
leftBoundary(root->left, res);
leaves(root, res);
rightBoundary(root->right, res);
return res;
}
void leftBoundary(TreeNode* node, vector<int>& res) {
if (!node || (!node->left && !node->right)) return;
res.push_back(node->val);
if (!node->left) leftBoundary(node->right, res);
else leftBoundary(node->left, res);
}
void rightBoundary(TreeNode* node, vector<int>& res) {
if (!node || (!node->left && !node->right)) return;
if (!node->right) rightBoundary(node->left, res);
else rightBoundary(node->right, res);
res.push_back(node->val);
}
void leaves(TreeNode* node, vector<int>& res) {
if (!node) return;
if (!node->left && !node->right) {
res.push_back(node->val);
}
leaves(node->left, res);
leaves(node->right, res);
}
};

下面这种方法把上面三种不同的递归揉合到了一个递归中,并用 bool 型变量来标记当前是求左边界结点还是求右边界结点,同时还有加入叶结点到结果 res 中的功能。如果左边界标记为 true,那么将结点值加入结果 res 中,下面就是调用对左右结点调用递归函数了。根据上面的解题思路可以知道,如果是求左边界结点,优先调用左子结点,当左子结点不存在时再调右子结点,而对于求右边界结点,优先调用右子结点,当右子结点不存在时再调用左子结点。综上考虑,在对左子结点调用递归函数时,左边界标识设为 leftbd && node->left,而对右子结点调用递归的左边界标识设为 leftbd && !node->left,这样左子结点存在就会被优先调用。而右边界结点的情况就正好相反,调用左子结点的右边界标识为 rightbd && !node->right, 调用右子结点的右边界标识为 rightbd && node->right,这样就保证了右子结点存在就会被优先调用,参见代码如下:

解法二:

class Solution {
public:
vector<int> boundaryOfBinaryTree(TreeNode* root) {
if (!root) return {};
vector<int> res{root->val};
helper(root->left, true, false, res);
helper(root->right, false, true, res);
return res;
}
void helper(TreeNode* node, bool leftbd, bool rightbd, vector<int>& res) {
if (!node) return;
if (!node->left && !node->right) {
res.push_back(node->val);
return;
}
if (leftbd) res.push_back(node->val);
helper(node->left, leftbd && node->left, rightbd && !node->right, res);
helper(node->right, leftbd && !node->left, rightbd && node->right, res);
if (rightbd) res.push_back(node->val);
}
};

下面这种解法实际上时解法一的迭代形式,整体思路基本一样,只是没有再用递归的写法,而是均采用 while 的迭代写法,注意在求右边界结点时迭代写法很难直接写出逆时针的顺序,我们可以先反过来保存,最后再调个顺序即可,参见代码如下:

解法三:

class Solution {
public:
vector<int> boundaryOfBinaryTree(TreeNode* root) {
if (!root) return {};
vector<int> res, right;
TreeNode *l = root->left, *r = root->right, *p = root;
if (root->left || root->right) res.push_back(root->val);
while (l && (l->left || l->right)) {
res.push_back(l->val);
if (l->left) l = l->left;
else l = l->right;
}
stack<TreeNode*> st;
while (p || !st.empty()) {
if (p) {
st.push(p);
if (!p->left && !p->right) res.push_back(p->val);
p = p->left;
} else {
p = st.top(); st.pop();
p = p->right;
}
}
while (r && (r->left || r->right)) {
right.push_back(r->val);
if (r->right) r = r->right;
else r = r->left;
}
res.insert(res.end(), right.rbegin(), right.rend());
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/545

类似题目:

Binary Tree Right Side View

参考资料:

https://leetcode.com/problems/boundary-of-binary-tree/

https://leetcode.com/problems/boundary-of-binary-tree/discuss/101288/Java-Recursive-Solution-Beats-94

https://leetcode.com/problems/boundary-of-binary-tree/discuss/101280/Java(12ms)-left-boundary-left-leaves-right-leaves-right-boundary

https://leetcode.com/problems/boundary-of-binary-tree/discuss/101294/Java-C%2B%2B-Clean-Code-(1-Pass-perorder-postorder-hybrid)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Boundary of Binary Tree 二叉树的边界的更多相关文章

  1. [LeetCode] 545. Boundary of Binary Tree 二叉树的边界

    Given a binary tree, return the values of its boundary in anti-clockwise direction starting from roo ...

  2. 545. Boundary of Binary Tree二叉树的边界

    [抄题]: Given a binary tree, return the values of its boundary in anti-clockwise direction starting fr ...

  3. Leetcode 110 Balanced Binary Tree 二叉树

    判断一棵树是否是平衡树,即左右子树的深度相差不超过1. 我们可以回顾下depth函数其实是Leetcode 104 Maximum Depth of Binary Tree 二叉树 /** * Def ...

  4. LeetCode - Boundary of Binary Tree

    Given a binary tree, return the values of its boundary in anti-clockwise direction starting from roo ...

  5. [LeetCode] Diameter of Binary Tree 二叉树的直径

    Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a b ...

  6. [LeetCode] 110. Balanced Binary Tree ☆(二叉树是否平衡)

    Balanced Binary Tree [数据结构和算法]全面剖析树的各类遍历方法 描述 解析 递归分别判断每个节点的左右子树 该题是Easy的原因是该题可以很容易的想到时间复杂度为O(n^2)的方 ...

  7. Leetcode 226 Invert Binary Tree 二叉树

    交换左右叶子节点 /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * ...

  8. (二叉树 递归) leetcode 105. Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  9. (二叉树 递归) leetcode 106. Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

随机推荐

  1. 自动化制作.framework

    1.生成.framework前的配置工作详见:http://www.cnblogs.com/huangzs/p/8029258.html 2. 将以下脚本粘贴进去,修改FMK_NAME. p.p1 { ...

  2. JAVA入门——Generic/泛型

    在台科大的第二次JAVA作业,老师课上讲的内容是泛型. 泛型(generic),泛型是Java SE 1.5的新特性,泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数.这种参数类型可以 ...

  3. chrome浏览器访问google插件

    访问google其实很多时候都是为了搜索资料,本文分享下,chrome浏览器访问google插件 下载地址:http://www.ggfwzs.com/ 1,下载完成后,解压: 如下: 2,打开谷歌浏 ...

  4. 《团队-Android手机便签-项目进度》

    首先想提个小意见,结对编程那边还有些问题需要处理,这个时候就催团队进度是不是不太好,至少应该让我们把结对处理完是吧.但是作业终究是作业,布置了就得做,我们只得匆匆忙忙画了个界面,功能什么的根本没来得及 ...

  5. bug终结者 团队作业第一周

    bug终结者 团队作业第一周 小组组员及人员分工 小组成员 组长: 20162323 周楠 组员: 20162302 杨京典 20162322 朱娅霖 20162327 王旌含 20162328 蔡文 ...

  6. 项目Alpha冲刺Day12

    一.会议照片 二.项目进展 1.今日安排 修复全局的日期转换问题,完成用户所有相关的模块,对全局的异常处理做优化.其他模块进行一部分实现. 2.问题困难 全局异常处理后发现没有进行按照链进行下去,造成 ...

  7. 操作 numpy 数组的常用函数

    操作 numpy 数组的常用函数 where 使用 where 函数能将索引掩码转换成索引位置: indices = where(mask) indices => (array([11, 12, ...

  8. PID控制示例C编程

    typedef struct PID_zhs { double P,I,D;//P.I.D系数 float curError;//当前误差 float lastError;//上次误差 float p ...

  9. 识别图片中文字(百度AI)

     这个是百度官方的文档         https://ai.baidu.com/docs#/OCR-API/top    通用的文字识别,如果是其他的含生僻字/含位置信息的版本,请参考官方的文档,只 ...

  10. 08-TypeScript中的类

    类的概念通常是在后端开发中实现的思想,比如C#.C++或Java,传统的JavaScript开发通过使用原型模式来模拟类的功能.在TypeScript中,天生就是支持类 的,可以让前端的开发更加具有面 ...