You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Sample Output4
55
9
15

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

 
就当练练手了。。
水题一道;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 300005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n;
ll a[maxn]; struct node {
ll l, r;
ll lazy;
ll sum;
}tree[maxn<<1]; void pushup(int rt) {
tree[rt].sum = tree[rt << 1].sum + tree[rt << 1 | 1].sum;
} void build(int l, int r, int rt) {
tree[rt].l = l; tree[rt].r = r; tree[rt].lazy = 0;
if (l == r) {
tree[rt].lazy = 0;
tree[rt].sum = a[l]; return;
}
int mid = (l + r) >> 1;
build(l, mid, rt << 1); build(mid + 1, r, rt << 1 | 1);
pushup(rt);
} void pushdown(int rt) {
if (tree[rt].lazy) {
tree[rt << 1].sum += (ll)tree[rt].lazy*(tree[rt << 1].r - tree[rt << 1].l + 1);
tree[rt << 1 | 1].sum += (ll)tree[rt].lazy*(tree[rt << 1 | 1].r - tree[rt << 1 | 1].l + 1);
tree[rt << 1].lazy += tree[rt].lazy;
tree[rt << 1 | 1].lazy += tree[rt].lazy;
tree[rt].lazy = 0;
}
} void upd(int l, int r, int rt,ll val) {
if (l <= tree[rt].l&&tree[rt].r <= r) {
tree[rt].sum += (tree[rt].r - tree[rt].l + 1)*val;
tree[rt].lazy += val; return;
}
pushdown(rt);
int mid = (tree[rt].l + tree[rt].r) >> 1;
if (l <= mid)upd(l, r, rt << 1, val);
if (mid < r)upd(l, r, rt << 1 | 1, val);
pushup(rt);
} ll query(int l, int r, int rt) {
if (l <= tree[rt].l&&tree[rt].r <= r) {
return tree[rt].sum;
}
pushdown(rt);
int mid = (tree[rt].r + tree[rt].l) >> 1;
ll ans = 0;
if (l <= mid)ans += query(l, r, rt << 1);
if (mid < r)ans += query(l, r, rt << 1 | 1);
return ans;
} int main()
{
//ios::sync_with_stdio(0);
rdint(n); int q; rdint(q);
for (int i = 1; i <= n; i++)rdllt(a[i]);
build(1, n, 1);
while (q--) {
char op; int a, b;
cin >> op;
if (op == 'C') {
ll v; rdint(a); rdint(b); rdllt(v);
upd(a, b, 1, v);
}
else {
rdint(a); rdint(b);
cout << query(a, b, 1) << endl;
}
}
return 0;
}

A Simple Problem with Integers BZOJ3212 线段树的更多相关文章

  1. POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询)

    POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询) 题意分析 注意一下懒惰标记,数据部分和更新时的数字都要是long long ,别的没什么大 ...

  2. BZOJ3212: Pku3468 A Simple Problem with Integers(线段树)

    3212: Pku3468 A Simple Problem with Integers Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2530  So ...

  3. poj 3468:A Simple Problem with Integers(线段树,区间修改求和)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 58269   ...

  4. POJ 3468 A Simple Problem with Integers(线段树区间更新区间查询)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 92632   ...

  5. POJ 3468:A Simple Problem with Integers(线段树区间更新模板)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 141093 ...

  6. POJ 3468 A Simple Problem with Integers(线段树模板之区间增减更新 区间求和查询)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 140120 ...

  7. POJ3468:A Simple Problem with Integers(线段树模板)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 149972 ...

  8. POJ-3468-A Simple Problem with Integers(线段树 区间更新 区间和)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 139191 ...

  9. poj 3468 A Simple Problem with Integers 【线段树-成段更新】

    题目:id=3468" target="_blank">poj 3468 A Simple Problem with Integers 题意:给出n个数.两种操作 ...

随机推荐

  1. Solaris10技巧

    如何查看UFS文件系统创建命令 root@ofs0accmcc01 # mkfs -m /dev/md/rdsk/d100 mkfs -F ufs -o nsect=128,ntrack=48,bsi ...

  2. 如何修改AWR的retention,interval

    检查AWR当前设置: SQL> select * from dba_hist_wr_control; DBID SNAP_INTERVAL RETENTION TOPNSQL --------- ...

  3. 11-24网页基础--Js基础语法

    1.运算符 比较运算符(7种):==/===/!=/>/</<=/>= ===(全等于) 2.字符串substring的用法 3.练习题:累加求和(运用Js的方法) 4.进制转 ...

  4. struts1.2里的ActionMessages的使用

    转自:https://blog.csdn.net/oswin_jiang/article/details/4582187

  5. mysql工具Navicat批量执行SQL语句

    例如:我现在要同时执行这么多语句 update community set xqmc=replace(xqmc,' ',''); update community set xqbm=replace(x ...

  6. [Python Study Notes]pandas.DataFrame.plot()函数绘图

    ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...

  7. Tornado之抽屉实战(2)--数据库表设计

    经过我们上次分析,数据库要有最基本的四张表,用户表,消息表,类型表,点赞表,评论表,接下来我们看着怎么设计吧 首先我们要清楚,表设计的代码是写在models下的 用户表 ? 1 2 3 4 5 6 7 ...

  8. R: 字符串处理包:stringr

    本文摘自:  http://blog.fens.me/r-stringr/ 1. stringr介绍 stringr包被定义为一致的.简单易用的字符串工具集.所有的函数和参数定义都具有一致性,比如,用 ...

  9. ZROI2018提高day4t2

    传送门 分析 我们二分球的直径,然后就像奶酪那道题一样,将所有距离相遇直径的点用并查集连在一起,然后枚举所有与上边的顶距离小于直径的点和所有与下边的距离小于直径的点,如果它们被并查集连在一起则代表这个 ...

  10. Luogu 3625 [APIO2009]采油区域

    想了很久的dp,看了一眼题解之后感觉自己被安排了. 发现从一个矩形中选择三个不相交的正方形一共只有六种取法. 那么我们可以处理出四个值: $f_{i, j}$分别表示以$(i, j)$为右下角,左下角 ...