题目链接:http://poj.org/problem?id=2417

题意:求满足给出 P, N, B, 求满足条件 BL == N (mod P) 的最小 L, 若不存在则输出 no solution.

思路:Baby-Step Giant-Step 算法

设 L = kt − m,其中 t = ⌊sqrt(L)⌋, 0 <= m < t.那么 B^L = N (mod P) 就等价于 B^(kt − m) = N (mod P) 即 B^(kt) ∗ N^(−1) = B^m (mod P).我们可以先预处理出所有的 Bi (0 <= i < t) 记录在一个 hash 表里,然后枚举 k,计算 B^(kt) ∗ N^(−1) 的值,在hash表里找是否有符和条件的 m,若有则 kt − m 就是答案之一.所有答案中取最小的一个即可。

代码:

 #include <stdio.h>
#include <string.h>
#include <math.h>
#define ll long long
using namespace std; const int MOD = ;
int hs[MOD], head[MOD], next[MOD], id[MOD], top; void insert(int x, int y){
int k = x % MOD;
hs[top] = x;
id[top] = y;
next[top] = head[k];
head[k] = top++;
} int find(int x){
int k = x % MOD;
for(int i = head[k]; i != -; i = next[i]){
if(hs[i] == x) return id[i];
}
return -;
} int BSGS(int a, int b, int n){
memset(head, -, sizeof(head));
top = ;
if(b == ) return ;
int m = sqrt(n * 1.0), j;
ll x = , p = ;
for(int i = ; i < m; ++i, p = p * a % n) insert(p * b % n, i);
for(ll i = m; ; i += m){
if( (j = find(x = x * p % n)) != - ) return i - j;
if(i > n) break;
}
return -;
} int main(void){
int P, N, B;
while(~scanf("%d%d%d", &P, &B, &N)){
int ans = BSGS(B, N, P);
if(ans == -) printf("no solution\n");
else printf("%d\n", ans);
}
return ;
}

poj2417(Baby-Step Giant-Step)的更多相关文章

  1. 【POJ2417】baby step giant step

    最近在学习数论,然而发现之前学的baby step giant step又忘了,于是去翻了翻以前的代码,又复习了一下. 觉得总是忘记是因为没有彻底理解啊. 注意baby step giant step ...

  2. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  3. 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法

    先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Gian ...

  4. 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)

    什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...

  5. [置顶] hdu2815 扩展Baby step,Giant step入门

    题意:求满足a^x=b(mod n)的最小的整数x. 分析:很多地方写到n是素数的时候可以用Baby step,Giant step, 其实研究过Baby step,Giant step算法以后,你会 ...

  6. HDU 2815 Mod Tree 离散对数 扩张Baby Step Giant Step算法

    联系:http://acm.hdu.edu.cn/showproblem.php?pid=2815 意甲冠军: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...

  7. 『高次同余方程 Baby Step Giant Step算法』

    高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...

  8. HDU 2815 扩展baby step giant step 算法

    题目大意就是求 a^x = b(mod c) 中的x 用一般的baby step giant step 算法会超时 这里参考的是http://hi.baidu.com/aekdycoin/item/2 ...

  9. 【学习笔记】Baby Step Giant Step算法及其扩展

    1. 引入 Baby Step Giant Step算法(简称BSGS),用于求解形如\(a^x\equiv b\pmod p\)(\(a,b,p\in \mathbb{N}\))的同余方程,即著名的 ...

  10. POJ 2417 Discrete Logging ( Baby step giant step )

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3696   Accepted: 1727 ...

随机推荐

  1. java代码继承super

    总结:多态 :. 当重写父类的方法的时,子类对象名可以调用父类的方法,以及不带参的构造方法 package com.addd; public class rr { int a, b; String c ...

  2. Runnable、Callable、Future和FutureTask之一:基本用法

    Java从发布的第一个版本开始就可以很方便地编写多线程的应用程序,并在设计中引入异步处理.Thread类.Runnable接口和Java内存管理模型使得多线程编程简单直接.但正如之前提到过的,Thre ...

  3. 使用Fiddler进行iOS APP的HTTP/HTTPS抓包

    Fiddler不但能截获各种浏览器发出的HTTP请求, 也可以截获各种智能手机发出的HTTP/HTTPS请求.Fiddler能捕获IOS设备发出的请求,比如IPhone, IPad, MacBook. ...

  4. SpringMVC—对Ajax的处理(含 JSON 类型)(2)

    这里编写了一个通用的类型转换器: 用来转换形如: firstName=jack&lastName=lily&gender=1&foods=Steak&foods=Piz ...

  5. Celery-4.1 用户指南: Extensions and Bootsteps (扩展和Bootsteps)

    自定义消息消费者 你可能想要嵌入自定义的 Kombu 消费者来手动处理你的消息. 为了达到这个目的,celery 提供了一个 ConsumerStep bootstep 类,你只需要定义 get_co ...

  6. 球的移动(move)

    有n个盒子(1<=N<=1000)围成一个圈,每个盒子有ai个球,所有盒子的球的总数小于等于n.每一次移动,可以把一个球移动到它的一个相邻的盒子内.现在要使得每个盒子的球数<=1,求 ...

  7. 基于候选区域的深度学习目标检测算法R-CNN,Fast R-CNN,Faster R-CNN

    参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-C ...

  8. python正则以及collections模块

    正则 一.认识模块  什么是模块:一个模块就是一个包含了python定义和声明的文件,文件名就是加上.py的后缀,但其实import加载的模块分为四个通用类别 : 1.使用python编写的代码(.p ...

  9. 问题:oracle 两个表之间的修改;结果:ORACLE 两个表之间更新的实现

    前提条件: 表info_user中有字段id和name,字段id为索引 表data_user_info中有字段id和name,字段id为索引 其中表info_user中字段id和表data_user_ ...

  10. Struts2+Hibernate+Spring 整合示例

    转自:https://blog.csdn.net/tkd03072010/article/details/7468769 Struts2+Hibernate+Spring 整合示例 Spring整合S ...