poj2417(Baby-Step Giant-Step)
题目链接:http://poj.org/problem?id=2417
题意:求满足给出 P, N, B, 求满足条件 BL == N (mod P) 的最小 L, 若不存在则输出 no solution.
思路:Baby-Step Giant-Step 算法
设 L = kt − m,其中 t = ⌊sqrt(L)⌋, 0 <= m < t.那么 B^L = N (mod P) 就等价于 B^(kt − m) = N (mod P) 即 B^(kt) ∗ N^(−1) = B^m (mod P).我们可以先预处理出所有的 Bi (0 <= i < t) 记录在一个 hash 表里,然后枚举 k,计算 B^(kt) ∗ N^(−1) 的值,在hash表里找是否有符和条件的 m,若有则 kt − m 就是答案之一.所有答案中取最小的一个即可。
代码:
#include <stdio.h>
#include <string.h>
#include <math.h>
#define ll long long
using namespace std; const int MOD = ;
int hs[MOD], head[MOD], next[MOD], id[MOD], top; void insert(int x, int y){
int k = x % MOD;
hs[top] = x;
id[top] = y;
next[top] = head[k];
head[k] = top++;
} int find(int x){
int k = x % MOD;
for(int i = head[k]; i != -; i = next[i]){
if(hs[i] == x) return id[i];
}
return -;
} int BSGS(int a, int b, int n){
memset(head, -, sizeof(head));
top = ;
if(b == ) return ;
int m = sqrt(n * 1.0), j;
ll x = , p = ;
for(int i = ; i < m; ++i, p = p * a % n) insert(p * b % n, i);
for(ll i = m; ; i += m){
if( (j = find(x = x * p % n)) != - ) return i - j;
if(i > n) break;
}
return -;
} int main(void){
int P, N, B;
while(~scanf("%d%d%d", &P, &B, &N)){
int ans = BSGS(B, N, P);
if(ans == -) printf("no solution\n");
else printf("%d\n", ans);
}
return ;
}
poj2417(Baby-Step Giant-Step)的更多相关文章
- 【POJ2417】baby step giant step
最近在学习数论,然而发现之前学的baby step giant step又忘了,于是去翻了翻以前的代码,又复习了一下. 觉得总是忘记是因为没有彻底理解啊. 注意baby step giant step ...
- POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)
不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...
- 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法
先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝 扩展Baby Step Gian ...
- 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)
什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...
- [置顶] hdu2815 扩展Baby step,Giant step入门
题意:求满足a^x=b(mod n)的最小的整数x. 分析:很多地方写到n是素数的时候可以用Baby step,Giant step, 其实研究过Baby step,Giant step算法以后,你会 ...
- HDU 2815 Mod Tree 离散对数 扩张Baby Step Giant Step算法
联系:http://acm.hdu.edu.cn/showproblem.php?pid=2815 意甲冠军: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...
- 『高次同余方程 Baby Step Giant Step算法』
高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...
- HDU 2815 扩展baby step giant step 算法
题目大意就是求 a^x = b(mod c) 中的x 用一般的baby step giant step 算法会超时 这里参考的是http://hi.baidu.com/aekdycoin/item/2 ...
- 【学习笔记】Baby Step Giant Step算法及其扩展
1. 引入 Baby Step Giant Step算法(简称BSGS),用于求解形如\(a^x\equiv b\pmod p\)(\(a,b,p\in \mathbb{N}\))的同余方程,即著名的 ...
- POJ 2417 Discrete Logging ( Baby step giant step )
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3696 Accepted: 1727 ...
随机推荐
- Python中获得当前目录和上级目录
[转]原文地址:http://blog.csdn.net/liuweiyuxiang/article/details/71154346 获取当前文件的路径: from os import path d ...
- 四川第七届 D Vertex Cover(二分图最小点覆盖,二分匹配模板)
Vertex Cover frog has a graph with nn vertices v(1),v(2),…,v(n)v(1),v(2),…,v(n) and mm edges (v(a1), ...
- Caused by: java.lang.IncompatibleClassChangeError: Implementing class
Caused by: java.lang.IncompatibleClassChangeError: Implementing class 可能是导入的jar包重复. 尤其在Maven引用中,请查看是 ...
- python request (1) 环境
环境准备 requests httpbin virtualenv pip python 安装 #mkdir /home/requests #yum install -y python-pip ...
- Shell编程进阶 1.9 while循环
while 死循环 vim while.sh #!/bin/bash ## while : do date +%T sleep done : 永久帧 查看时间 3秒循环1次 打印1-10 #!/bin ...
- EF CODEFIRST WITH ORACLE
摸索了半天,运行通过了,但是还是有一点坑的,对于初次使用的人来说,可能会遇到几个问题 首先安装两个dll 如果你已经下载好了dll Oracle.ManagedDataAccess.dll Oracl ...
- Javascript面向对象(三):非构造函数的继承
这个系列的第一部分介绍了"封装",第二部分介绍了使用构造函数实现"继承". 今天是最后一个部分,介绍不使用构造函数实现"继承". 一.什么是 ...
- android task stack
http://www.android100.net/html/201402/22/5690.html
- 第4章 ZK基本特性与基于Linux的ZK客户端命令行学习 4-1 zookeeper常用命令行操作
ls path [watch] watch是一个监督者.quota是zookeeper的子目录.目录就是节点的意思,对于zookeeper来说它是以一个节点来说的,所以说/就是根节点,zookeepe ...
- php学习笔记-for循环
for(init;condition;statement) { func(); } for循环的执行逻辑是先执行一次init语句,然后判断condition是否为true,是则执行func(),再执行 ...