[SP10707]COT2 - Count on a tree II
题目大意:有一棵$n$个节点的树,第$i$个点有一个颜色$C_i$,$m$组询问,每次问$x->y$的路径上有多少种颜色
题解:树上莫队,把树按欧拉序展开成一条链,令第$i$个节点第一次出现在序列中为$in_i$,第二次为$out_i$,每一个询问就是看$in_x->in_y$中只出现一次的节点的颜色,但发现如果$x$不为$x,y$的$lca$的话$lca$不会被计入答案,特判一下就行
卡点:1$\sim$2.数组未开大
3.$tarjan$求$lca$时加询问加错
4.为先加入第一个点导致答案多一
C++ Code:
#include <cstdio>
#include <algorithm>
#define maxn 40010
#define maxm 100010
#define N (maxn << 1)
#define bl(x) ((x) >> 9)
int n, m;
int in[maxn], out[maxn], date[N], idx;
struct Query {
int l, r, lca, id;
bool addlca;
inline bool operator < (const Query &rhs) const {
return (bl(l) == bl(rhs.l)) ? r < rhs.r : l < rhs.l;
}
} q[maxm];
namespace tree {
int head[maxn], cnt = 0;
struct Edge {
int to, nxt;
} e[maxn << 1];
inline void add(int a, int b) {
e[++cnt] = (Edge) {b, head[a]}; head[a] = cnt;
e[++cnt] = (Edge) {a, head[b]}; head[b] = cnt;
}
int fa[maxn]; void dfs(int u) {
date[in[u] = ++idx] = u;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa[u]) {
fa[v] = u;
dfs(v);
}
}
date[out[u] = ++idx] = u;
}
}
namespace tarjan {
int head[maxn], cnt = 0;
struct QUERY {
int v, nxt, id;
} Q[maxm << 1];
inline void add(int a, int b, int c) {
Q[++cnt] = (QUERY) {b, head[a], c}; head[a] = cnt;
Q[++cnt] = (QUERY) {a, head[b], c}; head[b] = cnt;
} int f[maxn];
inline void init(int n) {
for (int i = 1; i <= n; i++) f[i] = i;
}
int find(int x) {return (x == f[x] ? x : (f[x] = find(f[x])));} bool vis[maxn];
void dfs(int u) {
for (int i = tree::head[u]; i; i = tree::e[i].nxt) {
int v = tree::e[i].to;
if (v != tree::fa[u]) {
dfs(v);
f[v] = u;
}
}
for (int i = tarjan::head[u]; i; i = tarjan::Q[i].nxt) q[Q[i].id].lca = find(Q[i].v);
}
}
#define ONLINE_JUDGE
#include <cctype>
namespace R {
int x;
#ifdef ONLINE_JUDGE
char *ch, op[1 << 26];
inline void init() {
fread(ch = op, 1, 1 << 26, stdin);
}
inline int read() {
while (isspace(*ch)) ch++;
for (x = *ch & 15, ch++; isdigit(*ch); ch++) x = x * 10 + (*ch & 15);
return x;
}
#else
char ch;
inline int read() {
ch = getchar();
while (isspace(ch)) ch = getchar();
for (x = ch & 15, ch = getchar(); isdigit(ch); ch = getchar()) x = x * 10 + (ch & 15);
return x;
}
#endif
} inline void swap(int &a, int &b) {a ^= b ^= a ^= b;}
int num[maxn], W[maxn], w[maxn], ans[maxm];
bool vis[maxn];
int main() {
#ifdef ONLINE_JUDGE
R::init();
#endif
tarjan::init(n = R::read()); m = R::read();
for (int i = 1; i <= n; i++) W[i] = w[i] = R::read();
int tot = (std::sort(W + 1, W + n + 1), std::unique(W + 1, W + n + 1) - W - 1);
for (int i = 1; i <= n; i++) w[i] = std::lower_bound(W + 1, W + tot + 1, w[i]) - W;
for (int i = 1; i < n; i++) tree::add(R::read(), R::read());
tree::dfs(1);
for (int i = 1; i <= m; i++) tarjan::add(q[i].l = R::read(), q[i].r = R::read(), q[i].id = i);
tarjan::dfs(1);
for (int i = 1; i <= m; i++) {
int &l = q[i].l, &r = q[i].r;
if (in[l] > in[r]) swap(l, r);
l = (q[i].addlca = (q[i].lca != l)) ? out[l] : in[l];
r = in[r];
}
std::sort(q + 1, q + m + 1);
int l, r, res; l = 1, r = 1, res = 1;
vis[date[1]] = 1; num[w[date[1]]]++;
for (int i = 1; i <= m; i++) {
while (l > q[i].l) (vis[date[--l]] ^= 1) ? (res += num[w[date[l]]]++ == 0) : (res -= --num[w[date[l]]] == 0);
while (r < q[i].r) (vis[date[++r]] ^= 1) ? (res += num[w[date[r]]]++ == 0) : (res -= --num[w[date[r]]] == 0);
while (l < q[i].l) (vis[date[l]] ^= 1) ? (res += num[w[date[l++]]]++ == 0) : (res -= --num[w[date[l++]]] == 0);
while (r > q[i].r) (vis[date[r]] ^= 1) ? (res += num[w[date[r--]]]++ == 0) : (res -= --num[w[date[r--]]] == 0);
ans[q[i].id] = res + (q[i].addlca && !num[w[q[i].lca]]);
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}
[SP10707]COT2 - Count on a tree II的更多相关文章
- SP10707 COT2 - Count on a tree II 莫队
链接 https://vjudge.net/problem/SPOJ-COT2 https://www.luogu.org/problemnew/show/SP10707 思路 dfs欧拉序转化为普通 ...
- SP10707 COT2 - Count on a tree II (树上莫队)
大概学了下树上莫队, 其实就是在欧拉序上跑莫队, 特判lca即可. #include <iostream> #include <algorithm> #include < ...
- SP10707 COT2 - Count on a tree II 莫队上树
题意:求一条链 \((u,v)\) 上不同的颜色数. 我们可以求出树的出栈入栈序(or 括号序?我也不确定). 图(from attack) 然后有一个很优美的性质: 设点 \(u\) 的入栈时间为 ...
- SP10707 COT2 - Count on a tree II [树上莫队学习笔记]
树上莫队就是把莫队搬到树上-利用欧拉序乱搞.. 子树自然是普通莫队轻松解决了 链上的话 只能用树上莫队了吧.. 考虑多种情况 [X=LCA(X,Y)] [Y=LCA(X,Y)] else void d ...
- 【SPOJ10707】 COT2 Count on a tree II
SPOJ10707 COT2 Count on a tree II Solution 我会强制在线版本! Solution戳这里 代码实现 #include<stdio.h> #inclu ...
- spoj COT2 - Count on a tree II
COT2 - Count on a tree II http://www.spoj.com/problems/COT2/ #tree You are given a tree with N nodes ...
- SPOJ COT2 - Count on a tree II(LCA+离散化+树上莫队)
COT2 - Count on a tree II #tree You are given a tree with N nodes. The tree nodes are numbered from ...
- COT2 - Count on a tree II(树上莫队)
COT2 - Count on a tree II You are given a tree with N nodes. The tree nodes are numbered from 1 to N ...
- 【树上莫队】【SP10707】 COT2 - Count on a tree II
Description 给定一棵 \(n\) 个点的树,每个节点有一个权值,\(m\) 次询问,每次查询两点间路径上有多少不同的权值 Input 第一行是 \(n\) 和 \(m\) 第二行是 \(n ...
随机推荐
- HJ浇花
题目描述 HJ养了很多花(99999999999999999999999999999999999盆),并且喜欢把它们排成一排,编号0~999999999999999999999999999999999 ...
- CBCGPImage的GetSize的问题及解决方法
BCGControlBar Pro for MFC 25.10是目前(2018-07-16)网上能够找到的最新能够使用的版本,我配合Visual Studio 2010使用.在单文档MFC程序的视图中 ...
- Java分享笔记:泛型机制的程序演示
package packA; import java.util.*; public class GenericDemo { public static void main(String[] args) ...
- Linux文件服务器实战(匿名用户)
一.进程与线程 二.vsftp服务器 1.文件传输协议(file transfer protocol,FTP) 基于该协议ftp客户端和服务端实现文件共享,上传下载文件 FTP基于TCP协议生成一个虚 ...
- AngularJS常见面试题
本文引自:https://segmentfault.com/a/1190000005836443 问题来源:如何衡量一个人的 AngularJS 水平? ng-if 跟 ng-show/hide 的区 ...
- redis数据库的安装配置
redis是当前比较热门的NOSQL系统之一,它是一个key-value存储系统.和Memcached类似,但很大程度补偿了memcached的不足,它支持存储的value类型相对更多,包括strin ...
- linux 源码安装php7.0 yum
PHP7和HHVM比较PHP7的在真实场景的性能确实已经和HHVM相当, 在一些场景甚至超过了HHVM.HHVM的运维复杂, 是多线程模型, 这就代表着如果一个线程导致crash了, 那么整个服务就挂 ...
- Nginx 配置继承模型
要了解nginx的继承模型,首先需要知道nginx使用多个配置块进行操作.在nginx中,这样的块被称为上下文,例如,放置在服务器上下文中的配置指令驻留在server { }块中,就像放置在http上 ...
- 【PHP项目】form表单的enctype属性
enctype这个属性管理的是表单的MIME(Multipurpose Internet Mail Extensions)编码,共有三个值可选: 1.application/x-www-form-ur ...
- Qt的QWebChannel和JS、HTML通信/交互驱动百度地图
Qt的QWebChannel和JS.HTML通信/交互驱动百度地图 0 前言 我一个研究嵌入式的,不知道怎么就迷上了上位机,接了几个项目都是关于Qt,这个项目还是比较经典的,自己没事儿的时候也进行研究 ...