题目描述

维护一个长度为n的序列,一开始都是0,支持以下两种操作:
1.U k a 将序列中第k个数修改为a。
2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作。
每次询问独立,即每次询问不会对序列进行修改。

输入

第一行包含两个正整数n,m(1<=n,m<=1000000),分别表示序列长度和操作次数。
接下来m行为m个操作,其中1<=k,c<=n,0<=a<=10^9,1<=s<=10^9。

输出

包含若干行,对于每个Z询问,若可行,输出TAK,否则输出NIE。

样例输入

3 8
U 1 5
U 2 7
Z 2 6
U 3 1
Z 2 6
U 2 2
Z 2 6
Z 2 1

样例输出

NIE
TAK
NIE
TAK


题解

离散化+树状数组

刚开始看错题意了,以为是在某个选定的区间中查询,想了一大堆离线算法发现还是搞不出来,然后才注意到是查询整个序列。。

每次选出c个正数,并将它们都减去1,能进行s次操作的充分必要条件是:

因为每个数最多只能被选min(w[i],s)次。

这个式子可以用树状数组快速求出,方法为离散化后求出小于等于s的数的和以及个数,再用n减去个数即为大于s的个数。这里使用了2个树状数组。

结构体能够大大减少代码量~

#include <cstdio>
#include <algorithm>
#define N 1000010
using namespace std;
typedef long long ll;
int m , x[N] , opt[N] , top;
ll y[N] , v[N] , w[N];
char str[5];
struct data
{
ll f[N];
void update(int x , int a)
{
int i;
for(i = x ; i <= m + 1 ; i += i & -i) f[i] += a;
}
ll query(int x)
{
int i;
ll ans = 0;
for(i = x ; i ; i -= i & -i) ans += f[i];
return ans;
}
}num , sum;
int main()
{
int n , i , tmp;
scanf("%d%d" , &n , &m);
v[0] = 1;
for(i = 1 ; i <= m ; i ++ ) scanf("%s%d%lld" , str , &x[i] , &y[i]) , y[i] ++ , v[i] = y[i] , opt[i] = (str[0] == 'Z');
sort(v , v + m + 1);
for(i = 1 ; i <= n ; i ++ ) num.update(1 , 1) , w[i] = 1;
for(i = 1 ; i <= m ; i ++ )
{
tmp = lower_bound(v , v + m + 1 , y[i]) - v + 1;
if(opt[i]) printf("%s\n" , (n - num.query(tmp)) * (y[i] - 1) + sum.query(tmp) >= x[i] * (y[i] - 1) ? "TAK" : "NIE");
else num.update(lower_bound(v , v + m + 1 , w[x[i]]) - v + 1 , -1) , sum.update(lower_bound(v , v + m + 1 , w[x[i]]) - v + 1 , 1 - w[x[i]]) , num.update(tmp , 1) , sum.update(tmp , y[i] - 1) , w[x[i]] = y[i];
}
return 0;
}

【bzoj4378】[POI2015]Logistyka 离散化+树状数组的更多相关文章

  1. CodeForces 540E - Infinite Inversions(离散化+树状数组)

    花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...

  2. Ultra-QuickSort(归并排序+离散化树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 50517   Accepted: 18534 ...

  3. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  4. BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组

    BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 ...

  5. poj-----Ultra-QuickSort(离散化+树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 38258   Accepted: 13784 ...

  6. Code Forces 652D Nested Segments(离散化+树状数组)

     Nested Segments time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  7. hdu 3015 Disharmony Trees (离散化+树状数组)

    Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. 【bzoj4627】[BeiJing2016]回转寿司 离散化+树状数组

    题目描述 给出一个长度为n的序列,求所有元素的和在[L,R]范围内的连续子序列的个数. 输入 第一行包含三个整数N,L和R,分别表示寿司盘数,满意度的下限和上限. 第二行包含N个整数Ai,表示小Z对寿 ...

  9. HDU 6318.Swaps and Inversions-求逆序对-线段树 or 归并排序 or 离散化+树状数组 (2018 Multi-University Training Contest 2 1010)

    6318.Swaps and Inversions 这个题就是找逆序对,然后逆序对数*min(x,y)就可以了. 官方题解:注意到逆序对=交换相邻需要交换的次数,那么输出 逆序对个数 即可. 求逆序对 ...

随机推荐

  1. java基础 File 递归删除文件夹中所有文件文件夹 目录(包含子目录)下的.java文件复制到e:/abc文件夹中, 并统计java文件的个数

    File 递归删除文件夹中所有文件文件夹 package com.swift.kuozhan; import java.io.File; import java.util.Scanner; /*键盘录 ...

  2. 调整JVM占用内存空间方法

    JVM默认占用空间为64M 调整方法如下图 在虚拟机参数中调整为80M 调试可以用 Byte[] arr=new Byte[1024*1024*64];

  3. Atlas实现mysql主从分离

     可以接受失败,无法接受放弃!加油! 一.介绍Atlas及架构图 Atlas源代码用C语言编写,它对于Web Server相当于是DB,相对于DB相当于是Client,如果把Atlas的逻辑放到Web ...

  4. django+xadmin在线教育平台(九)

    django admin介绍 上一章我们进行了需求分析和数据库设计.本章我们来快速搭建一个可用的后台管理系统. 后台管理系统特点: 权限管理 少前端样式.(样式一般不是很看重), 快速开发 djang ...

  5. IDEA 编辑框光标闪烁

    依次打开如下菜单: File -> Settings -> Editor -> General -> Appearance -> 选中 Caret blinking (m ...

  6. ES6笔记03-Set和Map数据结构

    ES6提供了新的数据结构Set.它类似于数组,但是成员的值都是唯一的,没有重复的值.Set本身是一个构造函数,用来生成Set数据结构. var s = new Set(); [2, 3, 5, 4, ...

  7. HTML5--混合布局

    1.先上效果图,大家来看看 2.代码如下: <!doctype html> <meta charset='utf-8' content='text/html' /> <h ...

  8. JSP---JSTL核心标签库的使用

    JSTL 核心标签库标签共有13个,功能上分为4类: 1.表达式控制标签:out.set.remove.catch 2.流程控制标签:if.choose.when.otherwise 3.循环标签:f ...

  9. Java语言基础---变量与数据类型

    变量的作用域 java用一对大括号“{}”作为语句块的范围,称为作用域.作用域中的变量不能重复定义:离开作用域,变量所分配的内存空间将被JVM所收回. 基本数据类型的包装类 java为基础数据类型提供 ...

  10. 2139: road

    把a[i], b[i]分开来排序 对应位置上的点连边 感性理解这是最小的 会连出若干个环 要使得若干个环连成大环 令a[i]向b[i - 1] 连边 易证一定能使图联通 感性理解这也是最小的 #inc ...