Antenna Placement

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 

Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

Output

For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5 题目大意:用1*2的长条覆盖图中的“*”。问最少需要多少个长条。 解题思路:最小路径覆盖:选择最少的边,让每个顶点都被选中,单独的结点可以作为一条路径。建图思路都是奇偶性建图。但是不同的是,这个需要把所有“*”都覆盖。那么我们考虑最小路径覆盖。
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 660;
const int INF = 0x3f3f3f3f;
vector<int>G[maxn];
int Mx[maxn], My[maxn], dx[maxn], dy[maxn], used[maxn], dis;
char Map[maxn][maxn];
int lis[maxn][maxn];
bool SearchP(int _n){
queue<int>Q;
memset(dx,-1,sizeof(dx));
memset(dy,-1,sizeof(dy));
int dis = INF;
for(int i = 1; i <= _n; i++){
if(Mx[i] == -1){
dx[i] = 0;
Q.push(i);
}
}
int v;
while(!Q.empty()){
int u = Q.front(); Q.pop();
if(dx[u] > dis) break;
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(dy[v] == -1){
dy[v] = dx[u] + 1;
if(My[v] == -1){
dis = dy[v];
}else{
dx[My[v]] = dy[v] + 1;
Q.push(My[v]);
}
}
}
}
return dis != INF;
}
int dfs(int u){
int v;
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(!used[v] && dy[v] == dx[u] + 1){
used[v] = 1;
if(My[v] != -1 && dy[v] == dis){
continue;
}
if(My[v] == -1 || dfs(My[v])){
Mx[u] = v;
My[v] = u;
return true;
}
}
}
return false;
}
int MaxMatch(int ln,int rn){
int ret = 0;
memset(Mx,-1,sizeof(Mx));
memset(My,-1,sizeof(My));
while(SearchP(ln)){
memset(used,0,sizeof(used));
for(int i = 1; i <= ln; i++){
if(Mx[i] == -1 && dfs(i)){
ret++;
}
}
}
return ret;
}
int main(){
int T, cas = 0, n, m, N, M;
scanf("%d",&T);
while(T--){
n = m = 0;
scanf("%d%d",&N,&M);
for(int i = 0; i <= 210; i++){
G[i].clear();
}
for(int i = 0; i <= M+1; i++){
Map[N+1][i] = 'o';
Map[0][i] = 'o';
}
for(int i = 0; i <= N+1; i++){
Map[i][0] = 'o';
Map[i][M+1] = 'o';
}
for(int i = 1; i <= N; i++){
getchar();
for(int j = 1; j <= M; j++){
scanf("%c",&Map[i][j]);
if(Map[i][j] == '*'){
if((i+j)%2 == 0){
++n;
lis[i][j] = n;
if(Map[i-1][j] == '*'){
G[n].push_back(lis[i-1][j]);
}
if(Map[i][j-1] == '*'){
G[n].push_back(lis[i][j-1]);
}
}else{
++m;
lis[i][j] = m;
if(Map[i-1][j] == '*'){
G[lis[i-1][j]].push_back(m);
}
if(Map[i][j-1] == '*'){
G[lis[i][j-1]].push_back(m);
}
}
}
}
}
int res = MaxMatch(n,m);
printf("%d\n",n+m-res);
}
return 0;
}
/*
55
4 4
o***
oo*o
oooo
oooo */

  


POJ 3020——Antenna Placement——————【 最小路径覆盖、奇偶性建图】的更多相关文章

  1. poj 3020 Antenna Placement (最小路径覆盖)

    链接:poj 3020 题意:一个矩形中,有n个城市'*'.'o'表示空地,如今这n个城市都要覆盖无线,若放置一个基站, 那么它至多能够覆盖本身和相邻的一个城市,求至少放置多少个基站才干使得全部的城市 ...

  2. 二分图最大匹配(匈牙利算法) POJ 3020 Antenna Placement

    题目传送门 /* 题意:*的点占据后能顺带占据四个方向的一个*,问最少要占据多少个 匈牙利算法:按坐标奇偶性把*分为两个集合,那么除了匹配的其中一方是顺带占据外,其他都要占据 */ #include ...

  3. poj 3020 Antenna Placement(最小路径覆盖 + 构图)

    http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  4. POJ 3020 Antenna Placement【二分匹配——最小路径覆盖】

    链接: http://poj.org/problem?id=3020 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  5. poj 3020 Antenna Placement (最小路径覆盖)

    二分图题目 当时看到网上有人的博客写着最小边覆盖,也有人写最小路径覆盖,我就有点方了,斌哥(kuangbin)的博客上只给了代码,没有解释,但是现在我还是明白了,这是个最小路径覆盖(因为我现在还不知道 ...

  6. POJ 3020 Antenna Placement (二分图最小路径覆盖)

    <题目链接> 题目大意:一个矩形中,有N个城市’*’,现在这n个城市都要覆盖无线,每放置一个基站,至多可以覆盖相邻的两个城市.问至少放置多少个基站才能使得所有的城市都覆盖无线? 解题分析: ...

  7. POJ 3020 Antenna Placement 【最小边覆盖】

    传送门:http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total ...

  8. POJ - 3020 Antenna Placement(最小覆盖路径)

    ---恢复内容开始--- https://vjudge.net/problem/POJ-3020 题意 *--代表城市,o--代表空地 给城市安装无线网,一个无线网最多可以覆盖两座城市,问覆盖所有城市 ...

  9. POJ 3020 Antenna Placement 最大匹配

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6445   Accepted: 3182 ...

随机推荐

  1. android中SharedPreferences 读取不到数据的问题

    在两个不同的 Activity中,A中SharedPreferences保存了数据,在A中可以读取到,但是在 B中却读取不到了,一直是空值,好是不爽,由于是按照书本上的例子写的, 怎么也找不到原因,后 ...

  2. Winform 数据库连接配置界面

    一.添加引用       C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\Microsoft.Data.ConnectionUI.Dial ...

  3. 识别子串 (string)——后缀自动机+线段树

    题目 [题目描述] 一般地,对于一个字符串 S,和 S 中第 $ i $ 个字符 x,定义子串 $ T=S(i.j) $ 为一个关于 x 的识别子申,当且仅当: 1.$ i \leq x \leq j ...

  4. [BZOJ4521][Cqoi2016]手机号码 (数位dp)

    题目描述 人们选择手机号码时都希望号码好记.吉利.比如号码中含有几位相邻的相同数字.不含谐音不吉利的数字等.手机运营商在发行新号码时也会考虑这些因素,从号段中选取含有某些特征的号码单独出售.为了便于前 ...

  5. 内核启动后,lcd显示logo失败

    针对-s5pv210,但对其他平台也使用 lcd显示logo失败,若显示成功默认的logo是一只企鹅,但是串口打印“Start display and show logo”,但是LCD屏没有显示    ...

  6. [USACO09OPEN]牛的数字游戏Cow Digit Game 博弈

    题目描述 Bessie is playing a number game against Farmer John, and she wants you to help her achieve vict ...

  7. java程序设计实验

    建立文件调试jdk idea断点调试 项目素数的寻遍

  8. Flashcache的 KEEP属性自动失效

    如果希望一个数据对象长期地缓存在flashcache中,则可以手动地将该数据对象的CELL_FLASH_CACHE属性设置为"keep". 其实需要说明的是,但不是数据对象的CEL ...

  9. 21. sessionStorage和localStorage的使用

    sessionStorage和localStorage的使用   前言 这是学习笔记,把从别人博客里转载的https://www.cnblogs.com/wangyue99599/p/9088904. ...

  10. Diophantus of Alexandria

    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...