Antenna Placement

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 

Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

Output

For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5 题目大意:用1*2的长条覆盖图中的“*”。问最少需要多少个长条。 解题思路:最小路径覆盖:选择最少的边,让每个顶点都被选中,单独的结点可以作为一条路径。建图思路都是奇偶性建图。但是不同的是,这个需要把所有“*”都覆盖。那么我们考虑最小路径覆盖。
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 660;
const int INF = 0x3f3f3f3f;
vector<int>G[maxn];
int Mx[maxn], My[maxn], dx[maxn], dy[maxn], used[maxn], dis;
char Map[maxn][maxn];
int lis[maxn][maxn];
bool SearchP(int _n){
queue<int>Q;
memset(dx,-1,sizeof(dx));
memset(dy,-1,sizeof(dy));
int dis = INF;
for(int i = 1; i <= _n; i++){
if(Mx[i] == -1){
dx[i] = 0;
Q.push(i);
}
}
int v;
while(!Q.empty()){
int u = Q.front(); Q.pop();
if(dx[u] > dis) break;
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(dy[v] == -1){
dy[v] = dx[u] + 1;
if(My[v] == -1){
dis = dy[v];
}else{
dx[My[v]] = dy[v] + 1;
Q.push(My[v]);
}
}
}
}
return dis != INF;
}
int dfs(int u){
int v;
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(!used[v] && dy[v] == dx[u] + 1){
used[v] = 1;
if(My[v] != -1 && dy[v] == dis){
continue;
}
if(My[v] == -1 || dfs(My[v])){
Mx[u] = v;
My[v] = u;
return true;
}
}
}
return false;
}
int MaxMatch(int ln,int rn){
int ret = 0;
memset(Mx,-1,sizeof(Mx));
memset(My,-1,sizeof(My));
while(SearchP(ln)){
memset(used,0,sizeof(used));
for(int i = 1; i <= ln; i++){
if(Mx[i] == -1 && dfs(i)){
ret++;
}
}
}
return ret;
}
int main(){
int T, cas = 0, n, m, N, M;
scanf("%d",&T);
while(T--){
n = m = 0;
scanf("%d%d",&N,&M);
for(int i = 0; i <= 210; i++){
G[i].clear();
}
for(int i = 0; i <= M+1; i++){
Map[N+1][i] = 'o';
Map[0][i] = 'o';
}
for(int i = 0; i <= N+1; i++){
Map[i][0] = 'o';
Map[i][M+1] = 'o';
}
for(int i = 1; i <= N; i++){
getchar();
for(int j = 1; j <= M; j++){
scanf("%c",&Map[i][j]);
if(Map[i][j] == '*'){
if((i+j)%2 == 0){
++n;
lis[i][j] = n;
if(Map[i-1][j] == '*'){
G[n].push_back(lis[i-1][j]);
}
if(Map[i][j-1] == '*'){
G[n].push_back(lis[i][j-1]);
}
}else{
++m;
lis[i][j] = m;
if(Map[i-1][j] == '*'){
G[lis[i-1][j]].push_back(m);
}
if(Map[i][j-1] == '*'){
G[lis[i][j-1]].push_back(m);
}
}
}
}
}
int res = MaxMatch(n,m);
printf("%d\n",n+m-res);
}
return 0;
}
/*
55
4 4
o***
oo*o
oooo
oooo */

  


POJ 3020——Antenna Placement——————【 最小路径覆盖、奇偶性建图】的更多相关文章

  1. poj 3020 Antenna Placement (最小路径覆盖)

    链接:poj 3020 题意:一个矩形中,有n个城市'*'.'o'表示空地,如今这n个城市都要覆盖无线,若放置一个基站, 那么它至多能够覆盖本身和相邻的一个城市,求至少放置多少个基站才干使得全部的城市 ...

  2. 二分图最大匹配(匈牙利算法) POJ 3020 Antenna Placement

    题目传送门 /* 题意:*的点占据后能顺带占据四个方向的一个*,问最少要占据多少个 匈牙利算法:按坐标奇偶性把*分为两个集合,那么除了匹配的其中一方是顺带占据外,其他都要占据 */ #include ...

  3. poj 3020 Antenna Placement(最小路径覆盖 + 构图)

    http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  4. POJ 3020 Antenna Placement【二分匹配——最小路径覆盖】

    链接: http://poj.org/problem?id=3020 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  5. poj 3020 Antenna Placement (最小路径覆盖)

    二分图题目 当时看到网上有人的博客写着最小边覆盖,也有人写最小路径覆盖,我就有点方了,斌哥(kuangbin)的博客上只给了代码,没有解释,但是现在我还是明白了,这是个最小路径覆盖(因为我现在还不知道 ...

  6. POJ 3020 Antenna Placement (二分图最小路径覆盖)

    <题目链接> 题目大意:一个矩形中,有N个城市’*’,现在这n个城市都要覆盖无线,每放置一个基站,至多可以覆盖相邻的两个城市.问至少放置多少个基站才能使得所有的城市都覆盖无线? 解题分析: ...

  7. POJ 3020 Antenna Placement 【最小边覆盖】

    传送门:http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total ...

  8. POJ - 3020 Antenna Placement(最小覆盖路径)

    ---恢复内容开始--- https://vjudge.net/problem/POJ-3020 题意 *--代表城市,o--代表空地 给城市安装无线网,一个无线网最多可以覆盖两座城市,问覆盖所有城市 ...

  9. POJ 3020 Antenna Placement 最大匹配

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6445   Accepted: 3182 ...

随机推荐

  1. 动态横向(水平)合并Repeater数据行DataItem的列

    Insus.NET有对GridView控件进行横纵分别合并列:横:<动态横向(水平)合并GridView数据行DataRow的列>http://www.cnblogs.com/insus/ ...

  2. day01.1-计算机体系与数据描述

    一.   指令执行过程                                 二.   计算机体系架构                                其中,ROM所存数据较为 ...

  3. A Plug for UNIX UVA - 753(网络流)

    题意:n个插座,m个设备及其插头类型,k种转换器,没有转换器的情况下插头只能插到类型名称相同的插座中,问最少剩几个不匹配的设备 lrj紫书里面讲得挺好的. 先跑一遍floyd,看看插头类型a能否转换为 ...

  4. jzoj5683. 【GDSOI2018模拟4.22】Prime (Min_25筛+拉格朗日插值+主席树)

    题面 \(n\leq 10^{12},k\leq 100\) 题解 一眼就是一个\(Min\_25\)筛+拉格朗日插值优化,然而打完之后交上去发现只有\(60\)分 神\(tm\)还要用主席树优化-- ...

  5. Flask 程序的基本结构

    1.初始化 所有Flask程序都必须创建一个程序实例.web服务器使用一种名为Web服务器网关借口的协议,把接收自客户端的所有请求都转交给这个对象处理. from flask import Flask ...

  6. docker与虚拟机性能比较(转)

    http://blog.csdn.net/cbl709/article/details/43955687 本博客来源于我的个人博客: www.chenbiaolong.com 欢迎访问. 概要 doc ...

  7. tomcat8性能优化

    在tomcat/catalina.sh中加入下面的配置,内存要根据机器实际情况配置,如果配置内存太大了有可能机器很慢. JAVA_OPTS="-server -Xms512m -Xmx512 ...

  8. Springboot 实现前台动态配置数据源 (修改数据源之后自动重启)

    1.将 db.properties 存放在classpath路径; driverClassName=com.mysql.jdbc.Driver url=jdbc:mysql://localhost:3 ...

  9. 当我们谈论CloudTable时究竟在谈论什么?

    表格存储服务(CloudTable Service,简称CloudTable)是基于Apache HBase提供的分布式.可伸缩.全托管的毫秒级NoSQL数据存储服务.它提供了毫秒级的随机读写能力,适 ...

  10. 深浅copy 和 集合

    1 对于赋值运算,就是共同指向一个内存地址.将一个值赋予一个变量,那么它的内存地址同时也赋予了他,如果值是不可变类型,改变值,就会产生一个新值和新内存地址,如果值是可变类型那么内存地址不会变. s1 ...