Antenna Placement

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 

Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

Output

For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5 题目大意:用1*2的长条覆盖图中的“*”。问最少需要多少个长条。 解题思路:最小路径覆盖:选择最少的边,让每个顶点都被选中,单独的结点可以作为一条路径。建图思路都是奇偶性建图。但是不同的是,这个需要把所有“*”都覆盖。那么我们考虑最小路径覆盖。
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 660;
const int INF = 0x3f3f3f3f;
vector<int>G[maxn];
int Mx[maxn], My[maxn], dx[maxn], dy[maxn], used[maxn], dis;
char Map[maxn][maxn];
int lis[maxn][maxn];
bool SearchP(int _n){
queue<int>Q;
memset(dx,-1,sizeof(dx));
memset(dy,-1,sizeof(dy));
int dis = INF;
for(int i = 1; i <= _n; i++){
if(Mx[i] == -1){
dx[i] = 0;
Q.push(i);
}
}
int v;
while(!Q.empty()){
int u = Q.front(); Q.pop();
if(dx[u] > dis) break;
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(dy[v] == -1){
dy[v] = dx[u] + 1;
if(My[v] == -1){
dis = dy[v];
}else{
dx[My[v]] = dy[v] + 1;
Q.push(My[v]);
}
}
}
}
return dis != INF;
}
int dfs(int u){
int v;
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(!used[v] && dy[v] == dx[u] + 1){
used[v] = 1;
if(My[v] != -1 && dy[v] == dis){
continue;
}
if(My[v] == -1 || dfs(My[v])){
Mx[u] = v;
My[v] = u;
return true;
}
}
}
return false;
}
int MaxMatch(int ln,int rn){
int ret = 0;
memset(Mx,-1,sizeof(Mx));
memset(My,-1,sizeof(My));
while(SearchP(ln)){
memset(used,0,sizeof(used));
for(int i = 1; i <= ln; i++){
if(Mx[i] == -1 && dfs(i)){
ret++;
}
}
}
return ret;
}
int main(){
int T, cas = 0, n, m, N, M;
scanf("%d",&T);
while(T--){
n = m = 0;
scanf("%d%d",&N,&M);
for(int i = 0; i <= 210; i++){
G[i].clear();
}
for(int i = 0; i <= M+1; i++){
Map[N+1][i] = 'o';
Map[0][i] = 'o';
}
for(int i = 0; i <= N+1; i++){
Map[i][0] = 'o';
Map[i][M+1] = 'o';
}
for(int i = 1; i <= N; i++){
getchar();
for(int j = 1; j <= M; j++){
scanf("%c",&Map[i][j]);
if(Map[i][j] == '*'){
if((i+j)%2 == 0){
++n;
lis[i][j] = n;
if(Map[i-1][j] == '*'){
G[n].push_back(lis[i-1][j]);
}
if(Map[i][j-1] == '*'){
G[n].push_back(lis[i][j-1]);
}
}else{
++m;
lis[i][j] = m;
if(Map[i-1][j] == '*'){
G[lis[i-1][j]].push_back(m);
}
if(Map[i][j-1] == '*'){
G[lis[i][j-1]].push_back(m);
}
}
}
}
}
int res = MaxMatch(n,m);
printf("%d\n",n+m-res);
}
return 0;
}
/*
55
4 4
o***
oo*o
oooo
oooo */

  


POJ 3020——Antenna Placement——————【 最小路径覆盖、奇偶性建图】的更多相关文章

  1. poj 3020 Antenna Placement (最小路径覆盖)

    链接:poj 3020 题意:一个矩形中,有n个城市'*'.'o'表示空地,如今这n个城市都要覆盖无线,若放置一个基站, 那么它至多能够覆盖本身和相邻的一个城市,求至少放置多少个基站才干使得全部的城市 ...

  2. 二分图最大匹配(匈牙利算法) POJ 3020 Antenna Placement

    题目传送门 /* 题意:*的点占据后能顺带占据四个方向的一个*,问最少要占据多少个 匈牙利算法:按坐标奇偶性把*分为两个集合,那么除了匹配的其中一方是顺带占据外,其他都要占据 */ #include ...

  3. poj 3020 Antenna Placement(最小路径覆盖 + 构图)

    http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  4. POJ 3020 Antenna Placement【二分匹配——最小路径覆盖】

    链接: http://poj.org/problem?id=3020 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  5. poj 3020 Antenna Placement (最小路径覆盖)

    二分图题目 当时看到网上有人的博客写着最小边覆盖,也有人写最小路径覆盖,我就有点方了,斌哥(kuangbin)的博客上只给了代码,没有解释,但是现在我还是明白了,这是个最小路径覆盖(因为我现在还不知道 ...

  6. POJ 3020 Antenna Placement (二分图最小路径覆盖)

    <题目链接> 题目大意:一个矩形中,有N个城市’*’,现在这n个城市都要覆盖无线,每放置一个基站,至多可以覆盖相邻的两个城市.问至少放置多少个基站才能使得所有的城市都覆盖无线? 解题分析: ...

  7. POJ 3020 Antenna Placement 【最小边覆盖】

    传送门:http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total ...

  8. POJ - 3020 Antenna Placement(最小覆盖路径)

    ---恢复内容开始--- https://vjudge.net/problem/POJ-3020 题意 *--代表城市,o--代表空地 给城市安装无线网,一个无线网最多可以覆盖两座城市,问覆盖所有城市 ...

  9. POJ 3020 Antenna Placement 最大匹配

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6445   Accepted: 3182 ...

随机推荐

  1. 初探webapi

    在网上看了小牛之路的webapi那篇文章,所以自己也想偿试一下 一,webapi简介 目前使用Web服务的三种主流的方式是:远程过程调用(RPC),面向服务架构(SOA)以及表征性状态转移(REST) ...

  2. winform GDI基础(四)简单截屏

    Bitmap bitmap = new Bitmap(Screen.PrimaryScreen.Bounds.Width, Screen.PrimaryScreen.Bounds.Height); G ...

  3. Data Base oracle简单使用及管理工具使用

    oracle简单使用及管理工具使用 一.常用工具: 1.sqldeveloper 2.navicat for oracle 3.PLSQL Developer 4.toad

  4. 十天入门java教程 Day01

    这几年一直在想学一门语言,java,Python,php也都看过,但是没有一门是精的.语言学习并不是写出hello world就行了.个人感觉需要静心去学习. java语言是什么? java是一种计算 ...

  5. upper_bound下确界

    //uppper_bound上确界找出首个大于某值的元素 #include<algorithm> #include<iostream> using namespace std; ...

  6. TeamLeader管理方法

    1. 规划 在加强质量的同时,提升团队业务理解能力推动产品经理深入度增加业务监控 2. 洗脑 现在离开去bat,前两年会学习,但可能无人带领待3-5年,做到B类从基金学习起,学习金融学习架构设计提升团 ...

  7. Knights0.

    Knights t数轴上有n个骑士位于1,2,3,...n,移动速度相同,初始移动方向已知,当两个骑士相遇时,各有50%的概率赢,输了就死了,并且移动到0和n+1的位置时移动方向会翻转,问最右的骑士存 ...

  8. 「十二省联考 2019」皮配——dp

    题目 [题目描述] #### 题目背景一年一度的综艺节目<中国好码农>又开始了.本季度,好码农由 Yazid.Zayid.小 R.大 R 四位梦想导师坐镇,他们都将组建自己的梦想战队,并率 ...

  9. ftp 添加用户及修改用户目录

    添加用户 : useradd 用户名 -s /sbin/nologin //限定用户test不能telnet,只能ftp; usermod -s /sbin/bash 用户名 //用户恢复正常 ;该账 ...

  10. 1047 邮票面值设计 (DFS+DP)

    题目描述 Description 给定一个信封,最多只允许粘贴N张邮票,计算在给定K(N+K≤40)种邮票的情况下(假定所有的邮票数量都足够),如何设计邮票的面值,能得到最大值MAX,使在1-MAX之 ...