It's graduated season, every students should leave something on the wall, so....they draw a lot of geometry shape with different color. 

When teacher come to see what happened, without getting angry, he was surprised by the talented achievement made by students. He found the wall full of color have a post-modern style so he want to have an in-depth research on it. 

To simplify the problem, we divide the wall into n*m (1 ≤ n ≤ 200, 1 ≤ m ≤ 50000) pixels, and we have got the order of coming students who drawing on the wall. We found that all students draw four kinds of geometry shapes in total that is Diamond, Circle, Rectangle and Triangle. When a student draw a shape in pixel (i, j) with color c (1 ≤ c ≤ 9), no matter it is covered before, it will be covered by color c. 

There are q (1 ≤ q ≤ 50000) students who have make a drawing one by one. And after q operation we want to know the amount of pixels covered by each color.

Input

There are multiple test cases. 

In the first line of each test case contains three integers n, m, q. The next q lines each line contains a string at first indicating the geometry shape: 

* Circle: given xc, yc, r, c, and you should cover the pixels(x, y) which satisfied inequality (x - xc) 2 + (y - yc) 2 ≤ r 2 with color c; 

* Diamond: given xc, yc, r, c, and you should cover the pixels(x, y) which satisfied inequality abs(x - xc) + abs(y - yc) ≤ r with color c; 

* Rectangle: given xc, yc, l, w, c, and you should cover the pixels(x, y) which satisfied xc ≤ x ≤ xc+l-1, yc ≤ y ≤ yc+w-1 with color c; 

* Triangle: given xc, yc, w, c, W is the bottom length and is odd, the pixel(xc, yc) is the middle of the bottom. We define this triangle is isosceles and the height of this triangle is (w+1)/2, you should cover the correspond pixels with color c; 

Note: all shape should not draw out of the n*m wall! You can get more details from the sample and hint. (0 ≤ xc, x ≤ n-1, 0 ≤ yc, y ≤ m-1)

Output

For each test case you should output nine integers indicating the amount of pixels covered by each color.

题解:想了好久,感觉要用到并查集,然后有点无从下手,然后参考了网上的博客,用暴力去给行涂色,再利用并查集的操作来维护列即可,但是G++通过不了

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std; const double pi=3.14; double eps=0.000001; int fa[100005];
int vis[100005];
int find(int x)
{
if (fa[x]==x)
return x;
else return fa[x]=find(fa[x]);
}
struct node
{
char op[12];
int x,y,z,d;
int e;
node() {}
}; node tm[100005];
int ans[10];
int main()
{
int n,m,k;
while(scanf("%d%d%d",&n,&m,&k)!=EOF)
{
memset(ans,0,sizeof ans);
for (int i=1; i<=k; i++)
{
scanf("%s%d%d%d%d",tm[i].op,&tm[i].x,&tm[i].y,&tm[i].z,&tm[i].d);
if (tm[i].op[0]=='R') scanf("%d",&tm[i].e);
} for (int j=0; j<n; j++)
{
for (int i=0; i<=m; i++) fa[i]=i,vis[i]=0;
for (int i=k; i>=1; i--)
{
int l,r,col=tm[i].d;
if (tm[i].op[0]=='C')
{
int up=tm[i].x+tm[i].z;
int down=tm[i].x-tm[i].z;
if (!(j>=down&&j<=up ))continue;
int tmp=tm[i].z*tm[i].z-(tm[i].x-j)*(tm[i].x-j);
tmp=sqrt(tmp);
l=tm[i].y-tmp;
r=tm[i].y+tmp;
}
if (tm[i].op[0]=='D')
{
int up=tm[i].x+tm[i].z;
int down=tm[i].x-tm[i].z;
if (!(j>=down&&j<=up ))continue;
l=tm[i].z-abs(j-tm[i].x);
r=tm[i].y+l;
l=tm[i].y-l;
}
if (tm[i].op[0]=='R')
{
col=tm[i].e;
int up=tm[i].x+tm[i].z-1;
int down=tm[i].x;
if (!(j>=down&&j<=up ))continue;
l=tm[i].y;
r=tm[i].y+tm[i].d-1;
}
if (tm[i].op[0]=='T')
{
int up=tm[i].x+(tm[i].z+1)/2-1;
int down=tm[i].x;
if (!(j>=down&&j<=up ))continue;
int tmp=(tm[i].z-1)/2+(tm[i].x-j);
l=tm[i].y-tmp;
r=tm[i].y+tmp;
}
l=max (l,0);
r=min(r,m-1);
int fx=find(l);
for (int i=r; i>=l;)
{
int fy=find(i);
if (!vis[fy]) ans[col]++;
vis[fy]=1;
if (fx!=fy) fa[fy]=fx;
i=fy-1;
}
}
}
for (int i=1; i<=9; i++)
{
if (i>1) printf(" ");
printf("%d",ans[i]);
}
printf("\n");
}
return 0;
}

Draw a Mess (并查集)的更多相关文章

  1. UVA1493 - Draw a Mess(并查集)

    UVA1493 - Draw a Mess(并查集) 题目链接 题目大意:一个N * M 的矩阵,每次你在上面将某个范围上色,不论上面有什么颜色都会被最新的颜色覆盖,颜色是1-9,初始的颜色是0.最后 ...

  2. uva 1493 - Draw a Mess(并查集)

    题目链接:uva 1493 - Draw a Mess 题目大意:给定一个矩形范围,有四种上色方式,后面上色回将前面的颜色覆盖,最后问9种颜色各占多少的区域. 解题思路:用并查集维护每一个位置相应下一 ...

  3. UVA 1493 Draw a Mess(并查集+set)

    这题我一直觉得使用了set这个大杀器就可以很快的过了,但是网上居然有更好的解法,orz... 题意:给你一个最大200行50000列的墙,初始化上面没有颜色,接着在上面可能涂四种类型的形状(填充):  ...

  4. 并查集(涂色问题) HDOJ 4056 Draw a Mess

    题目传送门 题意:给出一个200 * 50000的像素点矩阵,执行50000次操作,每次把一个矩形/圆形/菱形/三角形内的像素点涂成指定颜色,问最后每种颜色的数量. 分析:乍一看,很像用线段树成段更新 ...

  5. 【HDOJ】4056 Draw a Mess

    这题用线段树就MLE.思路是逆向思维,然后每染色一段就利用并查集将该段移除,均摊复杂度为O(n*m). /* 4056 */ #include <iostream> #include &l ...

  6. POJ 2912 - Rochambeau - [暴力枚举+带权并查集]

    题目链接:http://poj.org/problem?id=2912 Time Limit: 5000MS Memory Limit: 65536K Description N children a ...

  7. CodeForces Roads not only in Berland(并查集)

    H - Roads not only in Berland Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d ...

  8. POJ2912 Rochambeau [扩展域并查集]

    题目传送门 Rochambeau Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4463   Accepted: 1545 ...

  9. POJ2912:Rochambeau(带权并查集)

    Rochambeau Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5208   Accepted: 1778 题目链接:h ...

随机推荐

  1. BZOJ5442: [Ceoi2018]Global warming

    BZOJ5442: [Ceoi2018]Global warming https://lydsy.com/JudgeOnline/problem.php?id=5442 分析: 等价于后缀加(前缀减也 ...

  2. [转]基于phantomJS实现web性能监控

    1.web性能监控背景描述 上期分享的<Web性能监控自动化探索之路–初识WebPageTest>从依赖webpagetest的角度给出了做性能日常检查的方案,但由于依赖结构相对复杂我们需 ...

  3. saltstack集中化管理平台

    1.安装与启动 yum install salt-master -y 安装服务端 chkconfig salt-master on 自启动 service salt-master start 启动 y ...

  4. 【转】 Pro Android学习笔记(三八):Fragment(3):基础小例子-续

    目录(?)[-] Step 2实现Fragment指定调用类TitleFragment onInflate和onAttach onCreate和onCreateView onActivityCreat ...

  5. ES6学习之Set和Map

    一.Set 1.Set 定义:Set类似于数组,但成员的值都是唯一的,没有重复的值 let s = new Set([1,2,3,4,5,2,4]); //Set { 1, 2, 3, 4, 5 } ...

  6. Python-通过调用Nmap来进行端口扫描

    首先要安装python-nmap库,还要安装配置好nmap 实验机器IP:192.168.220.139 端口开放情况 代码 # -*- coding:utf-8 -*- __author__ = & ...

  7. SQL中top使用方法

    转自:https://www.cnblogs.com/wang7/archive/2012/07/09/2582891.html 1. 在编写程序中,我们可能遇到诸如查询最热门的5篇文章或返回满足条件 ...

  8. Matlab数据类型的转换

    Matlab中有15种基本数据类型,主要是整型.浮点.逻辑.字符.日期和时间.结构数组.单元格数组以及函数句柄等. 1.整型:(int8:uint8:int16:uint16:int32:uint32 ...

  9. mysql四个默认数据库

    1.Master数据库  Master数据库记录了Sqlserver所有的服务器级系统信息,所有的注册帐户和密码,以及所有的系统设置信息,还记录了所有用户定义数据库的存储位置和初始化信息. 2.Tem ...

  10. Pig Latin JOIN (inner) 与JOIN (outer)的区别

    1.内连接(自然连接): 只有两个表相匹配的行才能在结果集中出现 2.外连接: 包括 (1)左外连接(左边的表不加限制) (2)右外连接(右边的表不加限制) (3)全外连接(左右两表都不加限制) 3. ...