Team them up!

Input file teams.in
Output file teams.out

Your task is to divide a number of persons into two teams,
in such a way, that:

  • everyone belongs to one of the teams;
  • every team has at least one member;
  • every person in the team knows every other person in his team;
  • teams are as close in their sizes as possible.

This task may have many solutions. You are to find and output any solution,
or to report that solution does not exist.

Input

For simplicity, all persons are assigned a unique integer identifier
from 1 to N.

The first line in the input file contains a single integer number N
(2 ≤ N ≤ 100) - the total number of persons to divide into teams, followed
by N lines - one line per person in ascending order of their identifiers.
Each line contains the list of distinct numbers Aij
(1 ≤ Aij ≤ N, Aij ≠ i), separated by spaces.
The list represents identifiers of persons that ith person knows.
The list is terminated by 0.

Output

If the solution to the problem does not exist, then write a single
message "No solution" (without quotes) to the output file.
Otherwise write a solution on two lines. On the first line of
the output file write the number of persons in the first team,
followed by the identifiers of persons in the first team,
placing one space before each identifier. On the second line
describe the second team in the same way. You may write teams
and identifiers of persons in the team in any order.

Sample input #1

5
3 4 5 0
1 3 5 0
2 1 4 5 0
2 3 5 0
1 2 3 4 0

Output for the sample input #1

No solution

Sample input #2

5
2 3 5 0
1 4 5 3 0
1 2 5 0
1 2 3 0
4 3 2 1 0

Sample output for the sample input #2

3 1 3 5
2 2 4

简单地说,就是,一个N个节点的有向图,将节点分成两个集合,满足以下四个条件:
1. 每个节点属于其中一个集合
2. 每个集合至少有一个节点
3. 集合里的每一个节点都有边连向同一个集合里的其他点
4. 被分成的两个集合的大小要尽量接近

如果不能满足上述条件,输出 No solution ,否则输出这两个集合

题解

参照ylfdrib的题解。

首先,求原图的补图,同时把有向图转化为无向图,即:对于节点u, v,如果没有边<u, v>或<v, u>,则建无向边(u, v)

分析一下现在这个图,如果u, v相连,表明u, v不能在同一个集合里,对于这个问题我们就有了感觉,先求图的连通分量,对于同一个连通分量,我们用二分图着色法,把整个连通分量里的点分到两个集合里,当然,如果着色失败,则无解,输出 No solution ,否则,这m个连通分量就构成了m个集合对(xi, yi),xi表示第i个连通分量中着色为0的集合,yi表示第i个连通分量中着色为1的集合,这样问题就转化成:对这m个集合对,每对里选出一个集合,构成A集合,剩余的构成B集合,要求A,B大小尽量接近,这样我们就可以用动态规划来搞定了。

DP方程:dp[i][j] = (dp[i][j - cnt[i][0]] | dp[i][j - cnt[i][1]] ) (1 <= i <= scc, 0 <= j <= N / 2)

dp[i][j] = 1 表示前i个连通分支,可以构成符合要求的节点数为j的集合

这里暂且用scc表示连通分支个数,N表示总节点个数,cnt[i][0]表示第i个分支中被着色成0的节点个数,cnt[i][1]表示第i个分支中被着色成1的节点个数,同时记录dp路径,这样这道题就算彻底搞定了

#include<iostream>
#include<cstring>
#include<vector>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std; co int N=201;
int n,a[N],c[N],num[2],cnt,f[N][N],g[N][N];
pair<int,int> p[N];
#define x first
#define y second
vector<int> e[N],d[N][2],ans[2]; bool dfs(int x,int color){
c[x]=color,++num[color],d[cnt][color].push_back(x);
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(c[y]==-1){
if(!dfs(y,color^1)) return 0;
}
else if(c[y]==color) return 0;
}
return 1;
}
void print(int k,int x){
if(!k) return;
int t=g[k][x];
for(int i=0;i<2;++i)
for(unsigned j=0;j<d[k][i].size();++j)
ans[i^t].push_back(d[k][i][j]);
print(k-1,x+d[k][t].size()-d[k][t^1].size());
}
int main(){
read(n);
memset(c,-1,sizeof c);
for(int i=1;i<=n;++i){
memset(a,0,sizeof a);
for(int x;read(x);) a[x]=1;
for(int j=1;j<=n;++j)if(j!=i&&!a[j])
e[i].push_back(j),e[j].push_back(i);
}
for(int i=1;i<=n;++i)if(c[i]==-1){
num[0]=num[1]=0,++cnt;
if(!dfs(i,0)) return puts("No solution"),0;
p[cnt]=make_pair(num[0],num[1]);
}
f[0][100]=1;
for(int i=1;i<=cnt;++i)
for(int j=0;j<=200;++j)if(f[i-1][j]){
int x=p[i].x,y=p[i].y;
f[i][j+x-y]=1,g[i][j+x-y]=1;
f[i][j+y-x]=1,g[i][j+y-x]=0;
}
for(int i=0;i<=100;++i)
if(f[cnt][100-i]) {print(cnt,i+100);break;}
printf("%llu ",ans[0].size());
for(unsigned i=0;i<ans[0].size();++i) printf("%d ",ans[0][i]);
printf("\n%llu ",ans[1].size());
for(unsigned i=0;i<ans[1].size();++i) printf("%d ",ans[1][i]);
return 0;
}

POJ1112 Team Them Up!的更多相关文章

  1. POJ1112 Team Them Up![二分图染色 补图 01背包]

    Team Them Up! Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7608   Accepted: 2041   S ...

  2. OUC_OptKernel_oshixiaoxiliu_好题推荐

    poj1112 Team Them Up! 补图二分图+dp记录路径codeforces 256A Almost Arithmetical Progression dp或暴力 dp[i][j] = d ...

  3. 【poj1112】 Team Them Up!

    http://poj.org/problem?id=1112 (题目链接) 题意 将n个人分成两组,每个人有认识的人,要求每一组中的人互相认识,并且两组人数之差尽可能的小,求如何分. Solution ...

  4. Configure a VLAN on top of a team with NetworkManager (nmcli) in RHEL7

    SOLUTION VERIFIED September 13 2016 KB1248793 Environment Red Hat Enterprise Linux 7 NetworkManager ...

  5. Create a Team in RHEL7

    SOLUTION VERIFIED September 13 2016 KB2620131 Environment Red Hat Enterprise Linux 7 NetworkManager ...

  6. Team Leader 你不再只是编码, 来炖一锅石头汤吧

    h3{ color: #000; padding: 5px; margin-bottom: 10px; font-weight: bolder; background-color: #ccc; } h ...

  7. Configure bridge on a team interface using NetworkManager in RHEL 7

    SOLUTION IN PROGRESS February 29 2016 KB2181361 environment Red Hat Enterprise Linux 7 Teaming,Bridg ...

  8. BZOJ 4742: [Usaco2016 Dec]Team Building

    4742: [Usaco2016 Dec]Team Building Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 21  Solved: 16[Su ...

  9. 关于 feature team 的一些内容

    矩阵式管理,是常见的经典管理架构.其最早起源于美国的航空航天部门,然后被美国人带到了日本,然后被日本人带到了台湾,然后台湾人带到大陆...矩阵管理最典型的特征是,组织架构按职能与专业划分,项目由跨越部 ...

随机推荐

  1. 读《《图解TCP-IP》》有感

    读<<图解TCP/IP>>有感 TCP/IP 近期几天读完<<图解TCP/IP>>,收获蛮多,记得上学时读stevens的<<TCP/IP具 ...

  2. JS获取图片的缩略图,并且动态的加载多张图片

    找了好多资料也没有找到该死的ie的解决办法,最后放弃了ie <!DOCTYPE html> <html> <head> <meta charset=" ...

  3. vue router-link子级返回父级页面

    vue-router嵌套路由,从二级路由跳转到一级路由时,间歇性导致一级路由重叠 解决方法: 1.使用this.$router.push跳转

  4. 九度OJ 1189:还是约瑟夫环 (约瑟夫环)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:820 解决:522 题目描述: 生成一个长度为21的数组,依次存入1到21: 建立一个长度为21的单向链表,将上述数组中的数字依次存入链表每 ...

  5. php, tp5, 选中导航菜单

    1. 首先定义一个函数: function nav_select($navindex){ $nav_arr = [ 1 => ['index',], 2 => ['mei',], 3 =& ...

  6. iOS 推送跳转到相关页面

    哈哈哈 我又来窃取别人的劳动成果了 写的很好呦 http://www.jianshu.com/p/c0eb32443915

  7. ASP跳出FOR循环

    由于ASP不能使用GOTO语句,我在FOR循环中加入一个FOR循环,若需要跳出,即退出最里面那个FOR循环. DEMO: <%dim aa = 0for i = 1 to 10    for j ...

  8. mybatis中查询结果进行分组

    在用mybatis进行数据库查询时,对查询结果进行自动分组,在mapper.xml中的配置有些注意的地方,下面是实际项目中一个例子.在数据库中查询中如下: 在结果集中需要对alarmDate进行分组, ...

  9. mail

    mail.php  <?php require_once('class.phpmailer.php'); $mail = new PHPMailer(); //实例化 $mail->IsS ...

  10. 培训笔记——Linux历史

    1.  计算机有分时与实时操作系统的区分,如Dos为实时操作系统,你只能给它下达一个命令,这个命令执行完了,你才能下达下一个命令:像Linux和我们用的Windows就是分时操作系统,特点是可以并发 ...