LCS(最长公共子序列问题)
LCS(Longest Common Subsequence),即最长公共子序列。一个序列,如果是两个或多个已知序列的子序列,且是所有子序列中最长的,则为最长公共子序列。
原理:
事实上,最长公共子序列问题也有最优子结构性质。然后,用动态规划的方法找到状态转换方程。
记:Xi=﹤x1,⋯,xi﹥即X序列的前i个字符 (1≤i≤m)(前缀)
Yj=﹤y1,⋯,yj﹥即Y序列的前j个字符 (1≤j≤n)(前缀)
假定Z=﹤z1,⋯,zk﹥∈LCS(X , Y)。
若xm=yn(最后一个字符相同),则不难用反证法证明:该字符必是X与Y的任一最长公共子序列Z(设长度为k)的最后一个字符,即有zk = xm = yn 且显然有Zk-1∈LCS(Xm-1 , Yn-1)即Z的前缀Zk-1是Xm-1与Yn-1的最长公共子序列。此时,问题化归成求Xm-1与Yn-1的LCS(LCS(X , Y)的长度等于LCS(Xm-1 , Yn-1)的长度加1)。
若xm≠yn,则亦不难用反证法证明:要么Z∈LCS(Xm-1, Y),要么Z∈LCS(X , Yn-1)。由于zk≠xm与zk≠yn其中至少有一个必成立,若zk≠xm则有Z∈LCS(Xm-1 , Y),类似的,若zk≠yn 则有Z∈LCS(X , Yn-1)。此时,问题化归成求Xm-1与Y的LCS及X与Yn-1的LCS。LCS(X , Y)的长度为:max{LCS(Xm-1 , Y)的长度, LCS(X , Yn-1)的长度}。
由于上述当xm≠yn的情况中,求LCS(Xm-1 , Y)的长度与LCS(X , Yn-1)的长度,这两个问题不是相互独立的:两者都需要求LCS(Xm-1,Yn-1)的长度。另外两个序列的LCS中包含了两个序列的前缀的LCS,故问题具有最优子结构性质考虑用动态规划法。

public static int LCS(String x,String y){
int [][] z=new int [x.length()+1][y.length()+1];
int i,j;
for( i=0;i<=x.length();i++)
z[i][0]=0;
for( j=0;j<=y.length();j++)
z[0][j]=0;
for(i=1;i<=x.length();i++){
for( j=1;j<=y.length();j++){
if(x.charAt(i-1)==y.charAt(j-1)){
z[i][j]= z[i-1][j-1]+1;
}
else
z[i][j]=z[i-1][j] > z[i][j-1] ?z[i-1][j]:z[i][j-1];
}
}
return z[x.length()][y.length()];
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
LCS(最长公共子序列问题)的更多相关文章
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- POJ 1458 Common Subsequence(LCS最长公共子序列)
POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...
- 动态规划模板2|LCS最长公共子序列
LCS最长公共子序列 模板代码: #include <iostream> #include <string.h> #include <string> using n ...
- LCS 最长公共子序列
区别最长公共子串(连续) ''' LCS 最长公共子序列 ''' def LCS_len(x, y): m = len(x) n = len(y) dp = [[0] * (n + 1) for i ...
- LCS最长公共子序列(最优线性时间O(n))
这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...
- LCS最长公共子序列
问题:最长公共子序列不要求所求得的字符串在所给字符串中是连续的,如输入两个字符串ABCBDAB和BDCABA,字符串BCBA和BDAB都是他们的公共最长子序列 该问题属于动态规划问题 解答:设序列X= ...
- LCS最长公共子序列HDU1159
最近一直在学习算法,基本上都是在学习动态规划以及字符串.当然,两者交集最经典之一则是LCS问题. 首先LCS的问题基本上就是在字符串a,b之间找到最长的公共子序列,比如 YAOLONGBLOG 和 Y ...
- POJ 2250(LCS最长公共子序列)
compromise Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descri ...
- LCS最长公共子序列~dp学习~4
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 Palindrome Time Limit: 4000/2000 MS (Java/Others ...
- Atcoder F - LCS (DP-最长公共子序列,输出字符串)
F - LCS Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement You are gi ...
随机推荐
- 九度OJ 1002:Grading
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:18410 解决:4753 题目描述: Grading hundreds of thousands of Graduate Entrance ...
- ASP-AJAX-分页格式
HTML: <html> <head> <title>Mazey</title> <meta name="description&quo ...
- 洛谷P3943 星空
洛谷P3943 星空 题目背景 命运偷走如果只留下结果, 时间偷走初衷只留下了苦衷. 你来过,然后你走后,只留下星空. 题目描述 逃不掉的那一天还是来了,小 F 看着夜空发呆. 天上空荡荡的,没有一颗 ...
- greenlet和gevent模块的区别?
协程是一中多任务实现方式,它不需要多个进程或线程就可以实现多任务. yield能实现协程,不过实现过程不易于理解,greenlet是在这方面做了改进,通过switch. greenlet可以实现协程, ...
- (转)Javascript模块化编程(三):require.js的用法
这个系列的第一部分和第二部分,介绍了Javascript模块原型和理论概念,今天介绍如何将它们用于实战. 我采用的是一个非常流行的库require.js. 一.为什么要用require.js? 最早的 ...
- 中国移动OnetNet云平台 使用以太网传输数据流步骤
使用工具: 网络调试助手 链接:http://pan.baidu.com/s/1c06VC9E 密码:h0ys 1.选择TCP Client 2.输入IP 183.230.40.33 3.输入端口 ...
- pinpoint agent线程模型
pinpoint agent线程模型 以下分析基于pinpoint1.7.1版本 pinpoint agent主要使用到的异步线程有4个 DeadlockMonitorThread : 死锁监测线程, ...
- IOS 代码风格习惯 总结1
从我大三下学期开始工作开始, 几乎都是孤独的开发 因为身边开发ios 不多 ,除了学习开源的代码优秀风格技巧 剩下的 就是自己造, 所以 养成了 好多不好的习惯. 本知道面向对象的好处 ,但是实际开 ...
- 动态顺序表(C++实现)
顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构. 这样的存储方式使得线性表逻辑上相邻的元素,其在物理存储单元中也是相邻的.只要知道了第一个元素的 ...
- Android 双u盘方案【转】
本文转载自:https://blog.csdn.net/kc58236582/article/details/49618445 1 L1813系统上双U盘设计方案——系统设计 1.1 ...