LCS(最长公共子序列问题)
LCS(Longest Common Subsequence),即最长公共子序列。一个序列,如果是两个或多个已知序列的子序列,且是所有子序列中最长的,则为最长公共子序列。
原理:
事实上,最长公共子序列问题也有最优子结构性质。然后,用动态规划的方法找到状态转换方程。
记:Xi=﹤x1,⋯,xi﹥即X序列的前i个字符 (1≤i≤m)(前缀)
Yj=﹤y1,⋯,yj﹥即Y序列的前j个字符 (1≤j≤n)(前缀)
假定Z=﹤z1,⋯,zk﹥∈LCS(X , Y)。
若xm=yn(最后一个字符相同),则不难用反证法证明:该字符必是X与Y的任一最长公共子序列Z(设长度为k)的最后一个字符,即有zk = xm = yn 且显然有Zk-1∈LCS(Xm-1 , Yn-1)即Z的前缀Zk-1是Xm-1与Yn-1的最长公共子序列。此时,问题化归成求Xm-1与Yn-1的LCS(LCS(X , Y)的长度等于LCS(Xm-1 , Yn-1)的长度加1)。
若xm≠yn,则亦不难用反证法证明:要么Z∈LCS(Xm-1, Y),要么Z∈LCS(X , Yn-1)。由于zk≠xm与zk≠yn其中至少有一个必成立,若zk≠xm则有Z∈LCS(Xm-1 , Y),类似的,若zk≠yn 则有Z∈LCS(X , Yn-1)。此时,问题化归成求Xm-1与Y的LCS及X与Yn-1的LCS。LCS(X , Y)的长度为:max{LCS(Xm-1 , Y)的长度, LCS(X , Yn-1)的长度}。
由于上述当xm≠yn的情况中,求LCS(Xm-1 , Y)的长度与LCS(X , Yn-1)的长度,这两个问题不是相互独立的:两者都需要求LCS(Xm-1,Yn-1)的长度。另外两个序列的LCS中包含了两个序列的前缀的LCS,故问题具有最优子结构性质考虑用动态规划法。

public static int LCS(String x,String y){
int [][] z=new int [x.length()+1][y.length()+1];
int i,j;
for( i=0;i<=x.length();i++)
z[i][0]=0;
for( j=0;j<=y.length();j++)
z[0][j]=0;
for(i=1;i<=x.length();i++){
for( j=1;j<=y.length();j++){
if(x.charAt(i-1)==y.charAt(j-1)){
z[i][j]= z[i-1][j-1]+1;
}
else
z[i][j]=z[i-1][j] > z[i][j-1] ?z[i-1][j]:z[i][j-1];
}
}
return z[x.length()][y.length()];
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
LCS(最长公共子序列问题)的更多相关文章
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- POJ 1458 Common Subsequence(LCS最长公共子序列)
POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...
- 动态规划模板2|LCS最长公共子序列
LCS最长公共子序列 模板代码: #include <iostream> #include <string.h> #include <string> using n ...
- LCS 最长公共子序列
区别最长公共子串(连续) ''' LCS 最长公共子序列 ''' def LCS_len(x, y): m = len(x) n = len(y) dp = [[0] * (n + 1) for i ...
- LCS最长公共子序列(最优线性时间O(n))
这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...
- LCS最长公共子序列
问题:最长公共子序列不要求所求得的字符串在所给字符串中是连续的,如输入两个字符串ABCBDAB和BDCABA,字符串BCBA和BDAB都是他们的公共最长子序列 该问题属于动态规划问题 解答:设序列X= ...
- LCS最长公共子序列HDU1159
最近一直在学习算法,基本上都是在学习动态规划以及字符串.当然,两者交集最经典之一则是LCS问题. 首先LCS的问题基本上就是在字符串a,b之间找到最长的公共子序列,比如 YAOLONGBLOG 和 Y ...
- POJ 2250(LCS最长公共子序列)
compromise Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descri ...
- LCS最长公共子序列~dp学习~4
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 Palindrome Time Limit: 4000/2000 MS (Java/Others ...
- Atcoder F - LCS (DP-最长公共子序列,输出字符串)
F - LCS Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement You are gi ...
随机推荐
- 原来还有cookie-free domain这么回事
cookie-free domain的解释:在请求下载静态小图片.静态小文件的时候,浏览器会把它当成普通请求一样,在request的header信息里附加cookie信息. 但实际上,99.99%的静 ...
- Webpack探索【5】--- plugins详解
本文主要讲plugins相关内容. https://gitbook.cn/gitchat/column/59e065f64f7fbe555e479204/topic/59e96d87a35cf44e1 ...
- jQuery 中的 Deferred 和 Promises(转)
转自:http://www.css88.com/archives/4750/comment-page-1 看前首先了解:Promises/A规范,具体可以看这里,http://www.css88.co ...
- HDU - 1728 逃离迷宫 【BFS】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1728 思路 BFS 一开始 从开始位置 往四周走 如果能走的话 这个时候 转弯次数都是0 我们的标记不 ...
- Kattis - horrorfilmnight 【贪心】
题意 有两个人想去一起看电影,然后分别给出两个人 分别喜欢看的电影都在哪些天 然后 同一个人 不能连续看两天他不喜欢的电影 求他们最多可以看多少次电影 思路 先将两人喜欢看的电影进行排序, ① 选择两 ...
- Python OOP(2)-static method,class method and instance method
静态方法(Static Method): 一种简单函数,符合以下要求: 1.嵌套在类中. 2.没有self参数. 特点: 1.类调用.实例调用,静态方法都不会接受自动的self参数. 2.会记录所有实 ...
- MD5文件
我从某网站下载了一个iso系统镜像,我担心下载下来之后,被我电脑上的病毒感染了.我要确定这个文件还是“原汁原味”,就可以用软件再次生成该文件的md5码,然后和网站上的md5码对比一下就可以了.我用的是 ...
- HTTP请求解析--从一个请求开始
先来看看一个http请求实例 请求行: POST /chapter17/user.html HTTP/1.1 请求头: Accept: application/json, text/javascrip ...
- PyVmomi Clone_VM with CustomizaitonSpec
调用CustomizaitonSpec来Clone VM ''' Created on 2017-09-03 @author: Vincen ''' from pyVmomi import vim f ...
- 常用JQuery设置HTML元素内容
主要内容: 一.获取内容及属性 二.设置内容及属性 三.添加元素 四.删除元素 五.css()方法 六.寻找祖先及后代 一.获取内容及属性 二.设置内容及属性 相对于获取内容及属性的方式,只需在函数内 ...