LCS(最长公共子序列问题)
LCS(Longest Common Subsequence),即最长公共子序列。一个序列,如果是两个或多个已知序列的子序列,且是所有子序列中最长的,则为最长公共子序列。
原理:
事实上,最长公共子序列问题也有最优子结构性质。然后,用动态规划的方法找到状态转换方程。
记:Xi=﹤x1,⋯,xi﹥即X序列的前i个字符 (1≤i≤m)(前缀)
Yj=﹤y1,⋯,yj﹥即Y序列的前j个字符 (1≤j≤n)(前缀)
假定Z=﹤z1,⋯,zk﹥∈LCS(X , Y)。
若xm=yn(最后一个字符相同),则不难用反证法证明:该字符必是X与Y的任一最长公共子序列Z(设长度为k)的最后一个字符,即有zk = xm = yn 且显然有Zk-1∈LCS(Xm-1 , Yn-1)即Z的前缀Zk-1是Xm-1与Yn-1的最长公共子序列。此时,问题化归成求Xm-1与Yn-1的LCS(LCS(X , Y)的长度等于LCS(Xm-1 , Yn-1)的长度加1)。
若xm≠yn,则亦不难用反证法证明:要么Z∈LCS(Xm-1, Y),要么Z∈LCS(X , Yn-1)。由于zk≠xm与zk≠yn其中至少有一个必成立,若zk≠xm则有Z∈LCS(Xm-1 , Y),类似的,若zk≠yn 则有Z∈LCS(X , Yn-1)。此时,问题化归成求Xm-1与Y的LCS及X与Yn-1的LCS。LCS(X , Y)的长度为:max{LCS(Xm-1 , Y)的长度, LCS(X , Yn-1)的长度}。
由于上述当xm≠yn的情况中,求LCS(Xm-1 , Y)的长度与LCS(X , Yn-1)的长度,这两个问题不是相互独立的:两者都需要求LCS(Xm-1,Yn-1)的长度。另外两个序列的LCS中包含了两个序列的前缀的LCS,故问题具有最优子结构性质考虑用动态规划法。
public static int LCS(String x,String y){
int [][] z=new int [x.length()+1][y.length()+1];
int i,j;
for( i=0;i<=x.length();i++)
z[i][0]=0;
for( j=0;j<=y.length();j++)
z[0][j]=0; for(i=1;i<=x.length();i++){
for( j=1;j<=y.length();j++){
if(x.charAt(i-1)==y.charAt(j-1)){
z[i][j]= z[i-1][j-1]+1;
}
else
z[i][j]=z[i-1][j] > z[i][j-1] ?z[i-1][j]:z[i][j-1];
}
}
return z[x.length()][y.length()];
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
LCS(最长公共子序列问题)的更多相关文章
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- POJ 1458 Common Subsequence(LCS最长公共子序列)
POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...
- 动态规划模板2|LCS最长公共子序列
LCS最长公共子序列 模板代码: #include <iostream> #include <string.h> #include <string> using n ...
- LCS 最长公共子序列
区别最长公共子串(连续) ''' LCS 最长公共子序列 ''' def LCS_len(x, y): m = len(x) n = len(y) dp = [[0] * (n + 1) for i ...
- LCS最长公共子序列(最优线性时间O(n))
这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...
- LCS最长公共子序列
问题:最长公共子序列不要求所求得的字符串在所给字符串中是连续的,如输入两个字符串ABCBDAB和BDCABA,字符串BCBA和BDAB都是他们的公共最长子序列 该问题属于动态规划问题 解答:设序列X= ...
- LCS最长公共子序列HDU1159
最近一直在学习算法,基本上都是在学习动态规划以及字符串.当然,两者交集最经典之一则是LCS问题. 首先LCS的问题基本上就是在字符串a,b之间找到最长的公共子序列,比如 YAOLONGBLOG 和 Y ...
- POJ 2250(LCS最长公共子序列)
compromise Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descri ...
- LCS最长公共子序列~dp学习~4
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 Palindrome Time Limit: 4000/2000 MS (Java/Others ...
- Atcoder F - LCS (DP-最长公共子序列,输出字符串)
F - LCS Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement You are gi ...
随机推荐
- Frobenius inner product
https://en.wikipedia.org/wiki/Frobenius_inner_product Frobenius norm
- 【python】-- Socket
socket socket本质上就是在2台网络互通的电脑之间,架设一个通道,两台电脑通过这个通道来实现数据的互相传递. 我们知道网络 通信 都 是基于 ip+port 方能定位到目标的具体机器上的具体 ...
- Python 中奇妙的下划线
单个下划线(_) 通常有三种用法: 在python解释器: 单个下划线代表上次在交互解释期对话中(控制台)执行的结果.这种情况在标准的CPython解释器中首次被实现,接下来这种习惯也被保持下来: & ...
- php 验证邮箱的方法
在开发 web系统时,经常在注册或者登陆或者邮箱保护的时候会需要验证邮箱,现在我来分享邮箱验证的一些小tips.(多说一句,现在基本用手机号注册登录是趋势了,匹配手机号我后面再讲了). 1.最开始也是 ...
- scala如何解决类型强转问题
scala如何解决类型强转问题 scala属于强类型语言,在指定变量类型时必须确定数据类型,即便scala拥有引以为傲的隐式推到,这某些场合也有些有心无力. 例如: java同属强类型语言,但java ...
- 改善程序与设计的55个具体做法 day4
今天晚上回到小区门口,买了点冬枣,要结账的时候想起来,钥匙没带,落公司了! TNND,没办法再回趟公司,拿了钥匙,来回一个小时,汗~ 条款10:令operator=返回一个reference to * ...
- 动态创建selectjs 操作select和option
1.动态创建select function createSelect(){ var mySelect = document.createElement("select"); myS ...
- RedisTemplate操作Redis
RedisTemplate Redis 可以存储键与5种不同数据结构类型之间的映射,这5种数据结构类型分别为String(字符串).List(列表).Set(集合).Hash(散列)和 Zset(有序 ...
- 总结:iview(基于vue.js的开源ui组件)学习的一些坑
1.要改变组件的样式 找到这个组件的class名,然后覆盖样式. 举例:修改select框,显示圆角.只需给找到类名并写样 .ivu-select-selection{ border-radius:1 ...
- linux常见命令2
systemctl set-hostname HOSTNAME 在centos7上设置主机名,永久有效 curl -O -L http://www.gnu.org/software/gettext/ ...