[poj2356]--Find a multiple ——鸽巢原理
题意:
给定n个数,从中选取m个数,使得\(\sum | n\)。本题使用Special Judge.
题解:
既然使用special judge,我们可以直接构造答案。
首先构造在mod N剩余系下的前缀和。
\]
剩余系N的完系中显然共有N-1个元素,我们有N个前缀和。
根据鸽巢原理,一定有\(sum_j = sum_i\)
所以这样构造是可行的。
TRICK
具体实现的时候用了一个技巧:
从前往后扫描sum数组,记录一个pos数组,这样就可以把时间复杂度降到了\(\Theta (n)\)
代码
#include <cstdio>
#include <cstring>
const int maxn = 10005;
int N, a[maxn], sum[maxn], pos[maxn];
int main() {
scanf("%d", &N);
memset(pos, -1, sizeof(pos));
for(int i = 1; i <= N; i++) {
scanf("%d", &a[i]);
sum[i] = (a[i] + sum[i-1]) % N;
}
pos[0] = 0;
for(int i = 1; i <= N; i++) {
if(pos[sum[i]] == -1) {
pos[sum[i]] = i;
}
else {
printf("%d\n", i-pos[sum[i]]);
for(int j = pos[sum[i]]+1; j <= i; j++) {
printf("%d\n", a[j]);
}
return 0;
}
}
return 0;
}
[poj2356]--Find a multiple ——鸽巢原理的更多相关文章
- [POJ2356] Find a multiple 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8776 Accepted: 3791 ...
- [POJ2356]Find a multiple 题解(鸽巢原理)
[POJ2356]Find a multiple Description -The input contains N natural (i.e. positive integer) numbers ( ...
- poj2356 Find a multiple(抽屉原理|鸽巢原理)
/* 引用过来的 题意: 给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解, 随意输出一组即可.若不存在,输出 0. 题解: 首先必须声明的一点是本题是一定是有解的.原理根据 ...
- POJ2356 Find a multiple 抽屉原理(鸽巢原理)
题意:给你N个数,从中取出任意个数的数 使得他们的和 是 N的倍数: 在鸽巢原理的介绍里面,有例题介绍:设a1,a2,a3,……am是正整数的序列,试证明至少存在正数k和l,1<=k<=l ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- poj 2356 Find a multiple(鸽巢原理)
Description The input contains N natural (i.e. positive integer) numbers ( N <= ). Each of that n ...
- poj Find a multiple【鸽巢原理】
参考:https://www.cnblogs.com/ACShiryu/archive/2011/08/09/poj2356.html 鸽巢原理??? 其实不用map但是习惯了就打的map 以下C-c ...
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- HDU 1005 Number Sequence【多解,暴力打表,鸽巢原理】
Number Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
随机推荐
- HDU3853 概率DP
LOOPS Homura wants to help her friend Madoka save the world. But because of the plot of the Boss I ...
- RSA 加解密算法详解
RSA 为"非对称加密算法".也就是加密和解密用的密钥不同. (1)乙方生成两把密钥(公钥和私钥).公钥是公开的,任何人都可以获得,私钥则是保密的. (2)甲方获取乙方的公钥,然后 ...
- PowerShell脚本授权最佳实践
[TechTarget中国原创] Windows PowerShell已成为微软在Windows Server上提供的首选管理界面.因为深度整合到Windows Server操作系统,PowerShe ...
- Windows Server 2012 新特性:IPAM的配置
Windows Server 2012 中的 IPAM 是一个新增的内置框架,用于发现.监视.审核和管理企业网络上使用的 IP 地址空间.IPAM 可以对运行动态主机配置协议 (DHCP) 和域名服务 ...
- 《Cracking the Coding Interview》——第14章:Java——题目2
2014-04-26 18:44 题目:在java的try-catch-finally语句块里,如果catch里面有return语句的话,finally还会被执行吗? 解法:会. 代码: // 14. ...
- [转]赵桐正thinkphp教程笔记
原文:赵桐正thinkphp教程笔记 ,有修改 常用配置 常用配置config.php: <?php return array( //'配置项'=>'配置值' 'URL_PATHINFO_ ...
- 自动化测试(二)如何用python写一个用户登陆功能
需求信息: 写一个判断登录的程序: 输入: username password 最大错误次数是3次,输入3次都没有登录成功,提示错误次数达到上限 需要判断输入是否为空,什么也不输入,输入一个空格.n个 ...
- Python 3基础教程14-在文件尾部更新内容
本文介绍在一个已经存在的文件尾部添加内容,还是用到write方法. 这里exampleFile.txt是前面文件创建的文件,里面有两行文字.
- jenkins 连接服务器并运行脚本
1.登录,在系统管理——节点管理——新增节点——配置从节点,添加远程工作目录,选择启动方式:通过JAVA WEB启动代理,添加JDK 2.在列表点节点,点launch下载插件,放到D:\JENKINS ...
- Python学习4,字符串
字符串这个东西主要靠记,多打打就好了. _author_ = "Happyboy" name = "my \tname is happyboy and i am 66 y ...