题意

题目链接

Sol

挺套路的一道题

首先把式子移一下项

\(x \oplus 2x = 3x\)

有一件显然的事情:\(a \oplus b \leqslant c\)

又因为\(a \oplus b + 2(a \& b) = c\)

那么\(x \& 2x = 0\)

也就是说,\(x\)的二进制表示下不能有相邻位

第一问直接数位dp即可

第二问比较interesting,设\(f[i]\)表示二进制为\(i\)的方案数,转移时考虑上一位选不选

如果能选,方案数为\(f[i - 2]\)

不选的方案数为\(f[i - 1]\)

#include<bits/stdc++.h>
#define LL long long
//#define int long long
#define file {freopen("a.in", "r", stdin); freopen("a.out", "w", stdout);}
using namespace std;
const int MAXN = 233, mod = 1e9 + 7;
inline LL read() {
char c = getchar(); LL x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
LL N;
struct Matrix {
int m[3][3];
Matrix() {
memset(m, 0, sizeof(m));
}
Matrix operator * (const Matrix &rhs) const {
Matrix ans;
for(int k = 1; k <= 2; k++)
for(int i = 1; i <= 2; i++)
for(int j = 1; j <= 2; j++)
(ans.m[i][j] += 1ll * m[i][k] * rhs.m[k][j] % mod) %= mod;
return ans;
}
};
Matrix MatrixPow(Matrix a, LL p) {
Matrix base;
for(int i = 1; i <= 2; i++) base.m[i][i] = 1;
while(p) {
if(p & 1) base = base * a;
a = a * a; p >>= 1;
}
return base;
}
LL num[MAXN], tot; LL f[MAXN][2];
LL dfs(int x, bool lim, bool pre) {
if(!lim && (~f[x][pre])) return f[x][pre];
if(x == 0) return 1;
LL ans = 0;
if(!pre && (num[x] == 1 || (!lim))) ans += dfs(x - 1, lim, 1);
ans += dfs(x - 1, lim && num[x] == 0, 0); if(!lim) f[x][pre] = ans;
return ans;
}
LL dp(LL x) {
tot = 0;
while(x) num[++tot] = x & 1, x >>= 1;
return dfs(tot, 1, 0);
}
main() {
// file;
memset(f, -1, sizeof(f));
int T = read();
while(T--) {
N = read();
printf("%lld\n", dp(N) - 1);
Matrix a;
a.m[1][1] = 1; a.m[1][2] = 1;
a.m[2][1] = 1; a.m[2][2] = 0;
a = MatrixPow(a, N);
printf("%d\n", (a.m[1][1] + a.m[1][2]) % mod);
} return 0;
}
/*
1
5
*/

BZOJ3329: Xorequ(二进制数位dp 矩阵快速幂)的更多相关文章

  1. BZOJ3329 Xorequ(数位dp+矩阵快速幂)

    显然当x中没有相邻的1时该式成立,看起来这也是必要的. 于是对于第一问,数位dp即可.第二问写出dp式子后发现就是斐波拉契数列,矩阵快速幂即可. #include<iostream> #i ...

  2. BZOJ 3329 Xorequ:数位dp + 矩阵快速幂

    传送门 题意 现有如下方程:$ x \oplus 3x = 2x $ 其中 $ \oplus $ 表示按位异或. 共 $ T $ 组数据,每组数据给定正整数 $ n $,任务如下: 求出小于等于 $ ...

  3. hdu5564--Clarke and digits(数位dp+矩阵快速幂)

    Clarke and digits 问题描述 克拉克是一名人格分裂患者.某一天,克拉克变成了一个研究人员,在研究数字. 他想知道在所有长度在[l,r]之间的能被7整除且相邻数位之和不为k的正整数有多少 ...

  4. HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)

    传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...

  5. 2018.09.27 hdu5564Clarke and digits(数位dp+矩阵快速幂)

    传送门 好题啊. 我只会写l,rl,rl,r都很小的情况(然而题上并没有这种数据范围). 但这个dp转移式子可以借鉴. 我们用f[i][j][k]f[i][j][k]f[i][j][k]表示当前在第i ...

  6. bnuoj 34985 Elegant String DP+矩阵快速幂

    题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...

  7. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  8. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  9. 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂

    [题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...

随机推荐

  1. 【RMQ】【Sparse_Table算法】

    摘自网友,具体哪个忘记了,抱歉~ 定义: RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题: 对于长度为n的数列A,回答若干询问RMQ(A,i,j) ...

  2. SP34096 DIVCNTK - Counting Divisors (general)(Min_25筛)

    题面 洛谷 \(\sigma_0(i)\) 表示\(i\) 的约数个数 求\(S_k(n)=\sum_{i=1}^n\sigma_0(i^k)\mod 2^{64}\) 多测,\(T\le10^4,n ...

  3. nginx的worker_processes优化

    nginx的worker_processes参数来源: http://bbs.linuxtone.org/thread-1062-1-1.html分享一:搜索到原作者的话:As a general r ...

  4. c++运算符重载-如何决定作为成员函数还是非成员函数

    The Decision between Member and Non-member The binary operators = (assignment), [] (array subscripti ...

  5. ExtJS 4.2.1学习笔记(二)——主题theme

    1                 UI组件基础 学习ExtJs就是学习组件的使用.ExtJs4对框架进行了重构,其中最重要的就是形成了一个结构及层次分明的组件体系,由这些组件形成了Ext的控件. E ...

  6. Linux安装vim编辑器

    1.ubuntu系统:普通用户下输入命令:sudo apt-get install vim-gtk (注:出现E: Unable to locate package则将命令改成sudo apt-get ...

  7. join与os.path.join

    Python中有join和os.path.join()两个函数,具体作用如下: join:连接字符串数组.将字符串.元组.列表中的元素以指定的字符(分隔符)连接生成一个新的字符串os.path.joi ...

  8. 说Gradle

      说Gradle 刚开始认识Gradle这个名词是在蘑菇街的一场 交流会上,当时只是一个概念:第二面,是试图下载编译spring源码的时候:第三面,就是我司较真的安卓主程,有一天兴高彩烈的跟我说,我 ...

  9. [Android UI]View滑动方式总结

    一.前言 在上一篇文章,介绍了View的坐标等基础知识,有了基础知识后,对下面内容的理解也将会容易很多.那么本文介绍的是View滑动的几种方式,这对于View来说,也是需要重要掌握的内容,因为用户无时 ...

  10. CROSS APPLY和 OUTER APPLY 区别详解

    SQL Server 2005 新增 cross apply 和 outer apply 联接语句,增加这两个东东有啥作用呢? 我们知道有个 SQL Server 2000 中有个 cross joi ...