hdu3579(线性同余方程组)
Hello Kiki
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2734 Accepted Submission(s): 1010
day I was shopping in the supermarket. There was a cashier counting
coins seriously when a little kid running and singing "门前大桥下游过一群鸭,快来快来
数一数,二四六七八". And then the cashier put the counted coins back morosely and
count again...
Hello Kiki is such a lovely girl that she loves doing
counting in a different way. For example, when she is counting X coins,
she count them N times. Each time she divide the coins into several
same sized groups and write down the group size Mi and the number of the
remaining coins Ai on her note.
One day Kiki's father found her note and he wanted to know how much coins Kiki was counting.
Each
case contains N on the first line, Mi(1 <= i <= N) on the second
line, and corresponding Ai(1 <= i <= N) on the third line.
All numbers in the input and output are integers.
1 <= T <= 100, 1 <= N <= 6, 1 <= Mi <= 50, 0 <= Ai < Mi
each case output the least positive integer X which Kiki was counting
in the sample output format. If there is no solution then output -1.
2
14 57
5 56
5
19 54 40 24 80
11 2 36 20 76
Case 2: 5996
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
using namespace std; /*对于x=r0(mod m0)
x=r1(mod m1)
...
x=rn(mod mn)
输入数组m和数组r,返回[0,[m0,m1,...,mn]-1] 范围内满足以上等式的x0。
x的所有解为:x0+z*[m0,m1,...mn](z为整数)
*/
long long cal_axb(long long a,long long b,long long mod)
{
//防乘法溢出
long long sum=;
while(b)
{
if(b&) sum=(sum+a)%mod;
b>>=;
a=(a+a)%mod;
}
return sum;
} //ax + by = gcd(a,b)
//传入固定值a,b.放回 d=gcd(a,b), x , y
void extendgcd(long long a,long long b,long long &d,long long &x,long long &y)
{
if(b==){d=a;x=;y=;return;}
extendgcd(b,a%b,d,y,x);
y -= x*(a/b);
} long long Multi_ModX(long long m[],long long r[],int n,long long &M)
{
long long m0,r0;
m0=m[]; r0=r[];
for(int i=;i<n;i++)
{
long long m1=m[i],r1=r[i];
long long k0,k1;
long long tmpd;
extendgcd(m0,m1,tmpd,k0,k1);
if( (r1 - r0)%tmpd!= ) return -;
k0 *= (r1-r0)/tmpd;
m1 *= m0/tmpd;
r0 = ( cal_axb(k0,m0,m1)+r0)%m1;
m0=m1;
}
M=m0;
return (r0%m0+m0)%m0;
} int main()
{
int T;
cin>>T;
int tt=;
while(T--)
{
int n;
cin>>n;
long long a[],b[];
for(int i=;i<n;i++)
cin>>a[i];
for(int i=;i<n;i++)
cin>>b[i];
long long M;
long long ans=Multi_ModX(a,b,n,M);
printf("Case %d: ",tt++);
if(ans==) ans+=M;
cout<<ans<<endl;
}
return ;
}
hdu3579(线性同余方程组)的更多相关文章
- HDU3579:Hello Kiki(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...
- HDU1573:X问题(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1573 题目解析;HDU就是坑,就是因为n,m定义成了__int64就WAY,改成int就A了,无语. 这题 ...
- HDU1573 X问题【一元线性同余方程组】
题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1573 题目大意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X ...
- AcWing 204. 表达整数的奇怪方式 (线性同余方程组)打卡
给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod ...
- poj3708(公式化简+大数进制装换+线性同余方程组)
刚看到这个题目,有点被吓到,毕竟自己这么弱. 分析了很久,然后发现m,k都可以唯一的用d进制表示.也就是用一个ai,和很多个bi唯一构成. 这点就是解题的关键了. 之后可以发现每次调用函数f(x),相 ...
- hdu1573(线性同余方程组)
套模板,因为要是正整数,所以处理一下x=0的情况. X问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- poj2891(线性同余方程组)
一个exgcd解决一个线性同余问题,多个exgcd解决线性同余方程组. Strange Way to Express Integers Time Limit: 1000MS Memory Limi ...
- POJ2891Strange Way to Express Integers (线性同余方程组)
Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative ...
- HDU-1573-X问题(线性同余方程组)
链接: https://vjudge.net/problem/HDU-1573 题意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1] ...
随机推荐
- 关于可变参数列表stdarg
1.对于可变参数 可变参数列表通过stdarg.h中的宏实现: 主要有一个va_list类型 三个宏:va_start,va_arg,va_end; va_start格式: va_start(argu ...
- paho-mqtt
mqtt 参考: https://pypi.org/project/paho-mqtt/ https://github.com/eclipse/paho.mqtt.python #服务端 [root@ ...
- POJ 2983-Is the Information Reliable?(差分约束系统)
题目地址:POJ 2983 题意:有N个车站.给出一些点的精确信息和模糊信息.精确信息给出两点的位置和距离.模糊信息给出两点的位置.但距离大于等于一.试确定是否全部的信息满足条件. 思路:事实上就是让 ...
- oracle deadlock
Basic operation su - oracle sqlplus / as sysdba show parameter background show parameter user_dump_d ...
- etcd的原理分析
k8s集群使用etcd作为它的数据后端,etcd是一种无状态的分布式数据存储集群. 数据以key-value的形式存储在其中. 今天同事针对etcd集群的运作原理做了一个讲座,总结一下. A. etc ...
- 模拟服务器MockServer之Moco详细介绍
转载:http://blog.csdn.net/vite_s/article/details/54583243 前面一篇介绍了如何用mockito来测试我们的一些异步任务,例如网络请求时候的异步回调. ...
- crm使用soap取消用户訪问记录权限
//取消訪问权限 function demo() { //操作记录的id var targetId = "A8A46444-BA10-E411-8A04-00155D002F ...
- TCP应用程序通信协议的处理
TCP应用程序通信协议的处理 flyfish 2015-6-29 一 流式处理 TCP是一种流协议(stream protocol).TCP数据是以字节流的形式传递给接收者的,没有固有的"报 ...
- Mysql 创建权限较小的用户(只对特定数据库有操作权限)
项目开发过程中,因为root的权限太大,可能对其他数据库造成修改.故创建一权限较小的用户,使其只能对特定的数据库操作,以保证数据安全. 主要语句如下: grant all on bos19.* to ...
- php url路由伪静态
RewriteEngine on RewriteBase /RewriteRule ^([a-zA-Z]{1,})/([a-zA-Z]{1,})$ webim2/operator/users.php? ...