hdu3579(线性同余方程组)
Hello Kiki
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2734 Accepted Submission(s): 1010
day I was shopping in the supermarket. There was a cashier counting
coins seriously when a little kid running and singing "门前大桥下游过一群鸭,快来快来
数一数,二四六七八". And then the cashier put the counted coins back morosely and
count again...
Hello Kiki is such a lovely girl that she loves doing
counting in a different way. For example, when she is counting X coins,
she count them N times. Each time she divide the coins into several
same sized groups and write down the group size Mi and the number of the
remaining coins Ai on her note.
One day Kiki's father found her note and he wanted to know how much coins Kiki was counting.
Each
case contains N on the first line, Mi(1 <= i <= N) on the second
line, and corresponding Ai(1 <= i <= N) on the third line.
All numbers in the input and output are integers.
1 <= T <= 100, 1 <= N <= 6, 1 <= Mi <= 50, 0 <= Ai < Mi
each case output the least positive integer X which Kiki was counting
in the sample output format. If there is no solution then output -1.
2
14 57
5 56
5
19 54 40 24 80
11 2 36 20 76
Case 2: 5996
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
using namespace std; /*对于x=r0(mod m0)
x=r1(mod m1)
...
x=rn(mod mn)
输入数组m和数组r,返回[0,[m0,m1,...,mn]-1] 范围内满足以上等式的x0。
x的所有解为:x0+z*[m0,m1,...mn](z为整数)
*/
long long cal_axb(long long a,long long b,long long mod)
{
//防乘法溢出
long long sum=;
while(b)
{
if(b&) sum=(sum+a)%mod;
b>>=;
a=(a+a)%mod;
}
return sum;
} //ax + by = gcd(a,b)
//传入固定值a,b.放回 d=gcd(a,b), x , y
void extendgcd(long long a,long long b,long long &d,long long &x,long long &y)
{
if(b==){d=a;x=;y=;return;}
extendgcd(b,a%b,d,y,x);
y -= x*(a/b);
} long long Multi_ModX(long long m[],long long r[],int n,long long &M)
{
long long m0,r0;
m0=m[]; r0=r[];
for(int i=;i<n;i++)
{
long long m1=m[i],r1=r[i];
long long k0,k1;
long long tmpd;
extendgcd(m0,m1,tmpd,k0,k1);
if( (r1 - r0)%tmpd!= ) return -;
k0 *= (r1-r0)/tmpd;
m1 *= m0/tmpd;
r0 = ( cal_axb(k0,m0,m1)+r0)%m1;
m0=m1;
}
M=m0;
return (r0%m0+m0)%m0;
} int main()
{
int T;
cin>>T;
int tt=;
while(T--)
{
int n;
cin>>n;
long long a[],b[];
for(int i=;i<n;i++)
cin>>a[i];
for(int i=;i<n;i++)
cin>>b[i];
long long M;
long long ans=Multi_ModX(a,b,n,M);
printf("Case %d: ",tt++);
if(ans==) ans+=M;
cout<<ans<<endl;
}
return ;
}
hdu3579(线性同余方程组)的更多相关文章
- HDU3579:Hello Kiki(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...
- HDU1573:X问题(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1573 题目解析;HDU就是坑,就是因为n,m定义成了__int64就WAY,改成int就A了,无语. 这题 ...
- HDU1573 X问题【一元线性同余方程组】
题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1573 题目大意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X ...
- AcWing 204. 表达整数的奇怪方式 (线性同余方程组)打卡
给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod ...
- poj3708(公式化简+大数进制装换+线性同余方程组)
刚看到这个题目,有点被吓到,毕竟自己这么弱. 分析了很久,然后发现m,k都可以唯一的用d进制表示.也就是用一个ai,和很多个bi唯一构成. 这点就是解题的关键了. 之后可以发现每次调用函数f(x),相 ...
- hdu1573(线性同余方程组)
套模板,因为要是正整数,所以处理一下x=0的情况. X问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- poj2891(线性同余方程组)
一个exgcd解决一个线性同余问题,多个exgcd解决线性同余方程组. Strange Way to Express Integers Time Limit: 1000MS Memory Limi ...
- POJ2891Strange Way to Express Integers (线性同余方程组)
Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative ...
- HDU-1573-X问题(线性同余方程组)
链接: https://vjudge.net/problem/HDU-1573 题意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1] ...
随机推荐
- 设计模式之观察者模式(php实现)
github地址:https://github.com/ZQCard/design_pattern /** * 当对象间存在一对多关系时,则使用观察者模式(Observer Pattern). * 比 ...
- 资源的GPUAddress
BufferAddress CommandHandle TextureHandle 给shader采样的 ImageHandle 给shader load store的.../imageLoad() ...
- ES,ZK,Mysql相关参数优化
1.ES 内存调优: vi config/jvm.options -Xms16g -Xmx16g 2.Zookeeper参数配置调优 2.1\在conf目录下 vi java.env export J ...
- linux下eclipse闪退和重装jdk的方法
安装eclipse: (1)把eclipse-java-helios-SR2-linux-gtk.tar.gz解压到某个目录中,我解压到的 是/usr/eclipse,得到eclipse目录 (2)在 ...
- mysql热备及查询mysql操作日志
mysql热备 1 查看mysql版本,保证主库低于等于从库 2 主库配置: A 需要打开支持日志功能:log-bin=mysql-bin B 提供server-id:server-id=1 ...
- redhat 用yum安装的apache、mysql一般默认安装在哪个目录下?
使用yum安装成功后,使用rpm -qa | grep httpd和rpm -qa | grep mysql查看是否安装成功然后使用rpm -ql httpd和rpm -ql mysql查看安装文件都 ...
- vue 访问子组件示例 或者子元素
1.子组件 <base-input ref="usernameInput"></base-input> this.$refs.usernameInput 2 ...
- NYOJ-277-车牌号
车牌号 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描写叙述 茵茵非常喜欢研究车牌号码,从车牌号码上能够看出号码注冊的早晚,据研究发现,车牌号码是按字典序发放的,如今她收集 ...
- XML的基本用法(转)
一.概述 XML全称为可扩展的标记语言.主要用于描述数据和用作配置文件. XML文档在逻辑上主要由一下5个部分组成: XML声明:指明所用XML的版本.文档的编码.文档的独立性信息 文档类型声明:指出 ...
- jquery.validate.js 验证表单时,在IE当中未验证就直接提交的原因
jquery.validate.js 验证表单时,在IE当中未验证就直接提交的原因 今天利用了jquery.validate.js来验证表单,发现在火狐.谷歌浏览器当中都可以进行验证,但是在IE系列浏 ...