转载请注明出处:http://blog.csdn.net/lyy289065406/article/details/6648539

優YoU  http://user.qzone.qq.com/289065406/blog/1309237394

大致题意:

求A^B的所有约数(即因子)之和,并对其取模 9901再输出。

解题思路:

要求有较强 数学思维 的题

应用定理主要有三个:

要求有较强 数学思维 的题

应用定理主要有三个:

(1)   整数的唯一分解定理:

任意正整数都有且只有一种方式写出其素因子的乘积表达式。

A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数

(2)   约数和公式:

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

有A的所有因子之和为

S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

(3)   同余模公式:

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

有了上面的数学基础,那么本题解法就很简单了:

1: 对A进行素因子分解

分解A的方法:

A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;

当A%2!=0时,则A对下一个连续素数3不断取模...

以此类推,直到A==1为止。

注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。

最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.

      故 A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);

2:A^B的所有约数之和为:

sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].

3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n:

(1)若n为奇数,一共有偶数项,则:

      1 + p + p^2 + p^3 +...+ p^n

= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))

      = (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))

上式红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。

(2)若n为偶数,一共有奇数项,则:

      1 + p + p^2 + p^3 +...+ p^n

= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)

      = (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

上式红色加粗的前半部分恰好就是原式的一半,依然递归求解

4:反复平方法计算幂次式p^n

这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。

以p=2,n=8为例

常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2

这样做的要做8次乘法

而反复平方法则不同,

定义幂sq=1,再检查n是否大于0,

While,循环过程若发现n为奇数,则把此时的p值乘到sq

{

n=8>0 ,把p自乘一次, p=p*p=4     ,n取半 n=4

n=4>0 ,再把p自乘一次, p=p*p=16   ,n取半 n=2

n=2>0 ,再把p自乘一次, p=p*p=256  ,n取半 n=1,sq=sq*p

n=1>0 ,再把p自乘一次, p=p*p=256^2  ,n取半 n=0,弹出循环

}

则sq=256就是所求,显然反复平方法只做了3次乘法

#include<stdio.h>
#include<string.h> const int mod = 9901;
const int maxn = 10000; int p[maxn];
int n[maxn]; __int64 pow(int a, int b)// a^b
{
a %= mod;
__int64 ret = 1; while(b)
{
if(b&1)
ret = (ret*a)%mod;
a = (a*a)%mod;
b >>= 1;
}
return ret;
} __int64 sum(__int64 p, __int64 n)
{
if(n == 0) return 1;
else if(n&1) /**n 为奇数,偶数项*/
return (sum(p, n/2)*(1+pow(p, n/2+1)))%mod;
else return (sum(p, n/2-1)*(1+pow(p, n/2+1))+pow(p, n/2))%mod;
} int main()
{
int a,b;
while(scanf("%d%d", &a,&b) != EOF)
{
memset(p,0,sizeof(p));
memset(n,0,sizeof(n)); p[0] = 1;
n[0] = 1;
int k = 0;
int divis = 2; while(a != 1) /** 分解a*/
{
if(a%divis == 0)
{
p[++k] = divis;
n[k] = 1;
a /= divis;
}
while(a%divis == 0)
{
p[k] = divis;
a /= divis;
n[k]++;
} if(divis == 2)
divis += 1;
else divis += 2;
}
/*
for(int i = 0; i <= k; i++) printf("%d ", p[i]);
printf("\n");
for(int i = 0; i <= k; i++) printf("%d ", n[i]);
printf("\n");
*/
__int64 ans = 1;
for(int i = 1; i <= k; i++)
ans = (ans*(sum(p[i], n[i]*b)%mod))%mod;
printf("%I64d\n", ans);
}
return 0;
}
1845 Accepted 196K 16MS C++ 899B 2012-08-09 19:27:31
 

一样

//Memory Time
//336K 0MS #include<iostream>
using namespace std; const int size=10000;
const int mod=9901; __int64 sum(__int64 p,__int64 n); //递归二分求 (1 + p + p^2 + p^3 +...+ p^n)%mod
__int64 power(__int64 p,__int64 n); //反复平方法求 (p^n)%mod int main(void)
{
int A,B;
int p[size];//A的分解式,p[i]^n[i]
int n[size]; while(cin>>A>>B)
{
int i,k=0; //p,n指针 /*常规做法:分解整数A (A为非质数)*/
for(i=2;i*i<=A;) //根号法+递归法
{
if(A%i==0)
{
p[k]=i;
n[k]=0;
while(!(A%i))
{
n[k]++;
A/=i;
}
k++;
}
if(i==2) //奇偶法
i++;
else
i+=2;
}
/*特殊判定:分解整数A (A为质数)*/
if(A!=1)
{
p[k]=A;
n[k++]=1;
} int ans=1; //约数和
for(i=0;i<k;i++)
ans=(ans*(sum(p[i],n[i]*B)%mod))%mod; //n[i]*B可能会超过int,因此用__int64 cout<<ans<<endl;
}
return 0;
} __int64 sum(__int64 p,__int64 n) //递归二分求 (1 + p + p^2 + p^3 +...+ p^n)%mod
{ //奇数二分式 (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))
if(n==0) //偶数二分式 (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2)
return 1;
if(n%2) //n为奇数,
return (sum(p,n/2)*(1+power(p,n/2+1)))%mod;
else //n为偶数
return (sum(p,n/2-1)*(1+power(p,n/2+1))+power(p,n/2))%mod;
} __int64 power(__int64 p,__int64 n) //反复平方法求(p^n)%mod
{
__int64 sq=1;
while(n>0)
{
if(n%2)
sq=(sq*p)%mod;
n/=2;
p=p*p%mod;
}
return sq;
}

POJ 1845-Sumdiv【经典数学题目---求因子和】的更多相关文章

  1. POJ 1845 Sumdiv (数学,乘法逆元)

    题意: 给出数字A和B,要求AB的所有因子(包括AB和1)之和 mod 9901 的结果. 思路: 即使知道公式也得推算一阵子. 很容易知道,先把分解得到,那么得到,那么的所有因子之和的表达式如下: ...

  2. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  3. POJ 1845 (洛谷 :题目待添加)Sumdiv

    约数和 题目描述 给出a和b求a^b的约数和. 输入格式: 一行两个数a,b. 输出格式: 一个数表示结果对 9901 的模. Input 2 3 Output 15 SB的思路: 这是一道典型的数论 ...

  4. POJ 1845 Sumdiv (求某个数的所有正因子的和)

    题意: 求A^B的所有正因子的和,最后模9901的结果. 思路: 若对一个数n进行素数分解,n=p1^a1*p2^a2*p3^a3*...*pk^ak那么n的所有正因子之和sum=(1+p1+...+ ...

  5. POJ 1845 Sumdiv(求因数和 + 逆元)题解

    题意:给你a,b,要求给出a^b的因子和取模9901的结果. 思路:求因子和的方法:任意A = p1^a1 * p2^a2 ....pn^an,则因子和为sum =(1 + p1 + p1^2 + . ...

  6. poj 1845 Sumdiv 约数和定理

    Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...

  7. POJ 1845 Sumdiv 【二分 || 逆元】

    任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...

  8. poj 1845 Sumdiv (等比求和+逆元)

    题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...

  9. POJ 1845 Sumdiv#质因数分解+二分

    题目链接:http://poj.org/problem?id=1845 关于质因数分解,模板见:http://www.cnblogs.com/atmacmer/p/5285810.html 二分法思想 ...

随机推荐

  1. Java多线程——线程安全问题

    一.什么情况下会产生线程安全问题? 同时满足以下两个条件时: 1,多个线程在操作共享的数据.2,操作共享数据的线程代码有多条. 当一个线程在执行操作共享数据的多条代码过程中,其他线程参与了运算,就会导 ...

  2. hive删除表报错

    metastore.RetryingHMSHandler: HMSHandler Fatal error: javax.jdo.JDODataStoreException: You have an e ...

  3. 2017.5.1 使用fat jar插件来打包有引用外部jar包的项目

    如果在程序开发时用到了第三方提供的API.jar包或者其他附属资源.在导出并生成项目的jar文件时,必须将第三方的文件一并导出,否则无法正确运行. 可以使用fat jar插件,下载地址:http:// ...

  4. Linux——环境变量的文件及配置

    环境变量是包含关于系统及当前登录用户的环境信息的字符串,一些软件程序使用此信息确定在何处放置文件(如临时文件). 一.环境变量文件介绍 转自:http://blog.csdn.net/cscmaker ...

  5. react-native 初始化 各种报错 及 解决方案

    1.Unable to load script from assets 'index.android.bundle'. curl -k "http://localhost:8081/inde ...

  6. AlamoFireDemo

    // // ViewController.swift // AlamFireDemo // // import UIKit import Alamofire class ViewController: ...

  7. hdu 2871 Memory Control(线段树)

    题目链接:hdu 2871 Memory Control 题目大意:模拟一个内存分配机制. Reset:重置,释放全部空间 New x:申请内存为x的空间,输出左地址 Free x:释放地址x所在的内 ...

  8. android 多应用程序数据共享 ContentProvider和ContentResolver

      android 没有一个可以将所有应用程序数据统一放置的地方,即两个应用程序间的数据不能共享.但ContentProvider与ContentResolver可以解决多应用程序数据共享. 我们都知 ...

  9. 【LeetCode-面试算法经典-Java实现】【030-Substring with Concatenation of All Words(串联全部单词的子串)】

    [030-Substring with Concatenation of All Words(串联全部单词的子串)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Yo ...

  10. Android服务类Service具体解析

    Service有什么作用? 很多人不明确service是用来干嘛的.事实上Service作为Android四大组件之中的一个,能够理解为一个执行在后台的Activity.它适用于处理一些不干扰用户的长 ...