1、官网下载kaggle数据集Homesite Competition数据集,文件结构大致如下:

2、代码实战

#Parameter grid search with xgboost
#feature engineering is not so useful and the LB is so overfitted/underfitted
#so it is good to trust your CV #go xgboost, go mxnet, go DMLC! http://dmlc.ml #Credit to Shize's R code and the python re-implementation import pandas as pd
import numpy as np
import xgboost as xgb
from sklearn import preprocessing
from sklearn.cross_validation import train_test_split from sklearn.cross_validation import *
from sklearn.grid_search import GridSearchCV train = pd.read_csv("input/train.csv")[:1000]
test = pd.read_csv("input/test.csv")[:100] #去掉无意义的feature
train = train.drop('QuoteNumber', axis=1)
test = test.drop('QuoteNumber', axis=1) # Lets play with some dates
#转换feature到更有物理含义的格式
train['Date'] = pd.to_datetime(pd.Series(train['Original_Quote_Date']))
train = train.drop('Original_Quote_Date', axis=1) test['Date'] = pd.to_datetime(pd.Series(test['Original_Quote_Date']))
test = test.drop('Original_Quote_Date', axis=1) #如果我们将 datetime 转为年月日,则为物理含义更好的 feature:
train['Year'] = train['Date'].apply(lambda x: int(str(x)[:4]))
train['Month'] = train['Date'].apply(lambda x: int(str(x)[5:7]))
train['weekday'] = train['Date'].dt.dayofweek
#
test['Year'] = test['Date'].apply(lambda x: int(str(x)[:4]))
test['Month'] = test['Date'].apply(lambda x: int(str(x)[5:7]))
test['weekday'] = test['Date'].dt.dayofweek train = train.drop('Date', axis=1)
test = test.drop('Date', axis=1) #fill -999 to NAs
#这里先简单处理一下,把所有缺失值填上一个不太可能出现的取值:
train = train.fillna(-999)
test = test.fillna(-999) features = list(train.columns[1:]) #la colonne 0 est le quote_conversionflag
print(features) #对类别性质的feature做LabelEncode
#现实数据中很多特征并不是数值类型,而是类别类型,
#比如红色/蓝色/白色之类,虽然决策树天然擅长处理类别类型的特征,
#但是还是需要我们把原始的字符串值转为类别编号。
for f in train.columns:
if train[f].dtype=='object':
print(f)
lbl = preprocessing.LabelEncoder()
# lbl.fit(list(train[f].values))
lbl.fit(list(train[f].values) + list(test[f].values))
train[f] = lbl.transform(list(train[f].values))
test[f] = lbl.transform(list(test[f].values)) xgb_model = xgb.XGBClassifier() #brute force scan for all parameters, here are the tricks
#usually max_depth is 6,7,8
#learning rate is around 0.05, but small changes may make big diff
#tuning min_child_weight subsample colsample_bytree can have
#much fun of fighting against overfit
#n_estimators is how many round of boosting
#finally, ensemble xgboost with multiple seeds may reduce variance
parameters = {'nthread':[4], #when use hyperthread, xgboost may become slower
'objective':['binary:logistic'],
'learning_rate': [0.05], #so called `eta` value
'max_depth': [6],
'min_child_weight': [11],
'silent': [1],
'subsample': [0.8],
'colsample_bytree': [0.7],
'n_estimators': [5], #number of trees, change it to 1000 for better results
'missing':[-999],
'seed': [1337]} #使用 CV (cross validation) 做 xgb 分类器模型的调参
clf = GridSearchCV(xgb_model, parameters, n_jobs=5,
cv=StratifiedKFold(train['QuoteConversion_Flag'], n_folds=5, shuffle=True),
scoring='roc_auc',
verbose=2, refit=True) clf.fit(train[features], train["QuoteConversion_Flag"]) #trust your CV!
best_parameters, score, _ = max(clf.grid_scores_, key=lambda x: x[1])
print('Raw AUC score:', score)
for param_name in sorted(best_parameters.keys()):
print("%s: %r" % (param_name, best_parameters[param_name])) test_probs = clf.predict_proba(test[features])[:,1] sample = pd.read_csv('input/sample_submission.csv')
sample.QuoteConversion_Flag = test_probs
sample.to_csv("xgboost_best_parameter_submission.csv", index=False)

机器学习(十九)— xgboost初试kaggle的更多相关文章

  1. 剑指Offer(十九):顺时针打印矩阵

    剑指Offer(十九):顺时针打印矩阵 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net/baid ...

  2. 剑指Offer(二十九):最小的K个数

    剑指Offer(二十九):最小的K个数 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net/baid ...

  3. Alink漫谈(十九) :源码解析 之 分位点离散化Quantile

    Alink漫谈(十九) :源码解析 之 分位点离散化Quantile 目录 Alink漫谈(十九) :源码解析 之 分位点离散化Quantile 0x00 摘要 0x01 背景概念 1.1 离散化 1 ...

  4. 无废话ExtJs 入门教程十九[API的使用]

    无废话ExtJs 入门教程十九[API的使用] extjs技术交流,欢迎加群(201926085) 首先解释什么是 API 来自百度百科的官方解释:API(Application Programmin ...

  5. Python之路【第十九章】:Django进阶

    Django路由规则 1.基于正则的URL 在templates目录下创建index.html.detail.html文件 <!DOCTYPE html> <html lang=&q ...

  6. Bootstrap <基础二十九>面板(Panels)

    Bootstrap 面板(Panels).面板组件用于把 DOM 组件插入到一个盒子中.创建一个基本的面板,只需要向 <div> 元素添加 class .panel 和 class .pa ...

  7. Bootstrap <基础十九>分页

    Bootstrap 支持的分页特性.分页(Pagination),是一种无序列表,Bootstrap 像处理其他界面元素一样处理分页. 分页(Pagination) 下表列出了 Bootstrap 提 ...

  8. Web 开发人员和设计师必读文章推荐【系列二十九】

    <Web 前端开发精华文章推荐>2014年第8期(总第29期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...

  9. Web 前端开发精华文章集锦(jQuery、HTML5、CSS3)【系列十九】

    <Web 前端开发精华文章推荐>2013年第七期(总第十九期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各种增强网站用户体验的 jQuery 插件,展示前沿的 HTML5 和 C ...

随机推荐

  1. 《Lucene in Action》(第二版) 第一章节的学习总结 ---- 用最少的代码创建索引和搜索

    第一章节是介绍性质,但是通过这一章节的学习,我理解到如下概念: 1.Lucene由两部分组成:索引和搜索.索引是通过对原始数据的解析,形成索引的过程:而搜索则是针对用户输入的查找要求,从索引中找到匹配 ...

  2. .net 字符串驻留

    .net中的string表达的是常量字符串. JIT编译器编译时判断遇到的常量字符串是否在内部散列表中,如果不在,添加进去.当第一次执行到含字符串的方法时,CLR会检查该字符串是否在内部的一个散列表中 ...

  3. 嵌入式数据库H2的安装与配置

    一.配置JAVA环境 1.首先检查系统是否自带JDK 使用命令:#java -version 没有信息即为没有安装,如有且版本较低,可采用如下方式卸载: 查看命令: rpm -qa | grep ja ...

  4. js关于事件的一些总结(系列一)

    今天小弟在这里说一下 js 关于事件的一些总结  在这里直接上代码 省去啰嗦的步骤以免看烦了  总结的不好希望大家见谅 一.事件的默认事件 事件的默认事件是什么? 就是a标签有一个链接事件  inpu ...

  5. ubuntu study

    1.statement a.Fist af all,I think myself be to study miv in instruction. b.again,I think myself be t ...

  6. 数字证书转换cer---pem

    下载openssl-1.0.1s 安装好openssl之后,进入openssl目录:   输入openssl命令,即进入命令模式:   先将要转换的cer证书也放到openssl目录下面,然后执行以下 ...

  7. ThoughtWorks(中国) 程序员读书雷达

    ThoughtWorks(中国)程序员读书雷达 软件业的特点是变化.若要提高软件开发的技能,就必须跟上技术发展的步伐.埋首醉心于项目开发与实战,固然能够锤炼自己的开发技巧,却难免受限于经验与学识.世界 ...

  8. (转)RequireJS shim 用法说明

    RequireJS中如果使用AMD规范,在使用的过程中没有太多的问题,如果加载非AMD规范的JS文件,就需要使用Require中的shim. require.config({ paths:{ jque ...

  9. Linux 3 -grep

    七. grep家族: 1. grep退出状态: 0: 表示成功: 1: 表示在所提供的文件无法找到匹配的pattern: 2: 表示参数中提供的文件不存在. 见如下示例: /> grep 'ro ...

  10. Swap file "/etc/.hosts.swp" already exists! [O]pen Read-Only, (E)dit anyway, (R)ecover, (D)elete it,

    非正常关闭vi编辑器时会生成一个.swp文件 非正常关闭vi编辑器时会生成一个.swp文件 关于swp文件 使用vi,经常可以看到swp这个文件,那这个文件是怎么产生的呢,当你打开一个文件,vi就会生 ...