Luogu 3172 [CQOI2015]选数
考虑枚举$k$的倍数$dk$,容易知道$\left \lceil \frac{L}{K} \right \rceil\leq d\leq \left \lfloor \frac{H}{k} \right \rfloor$
我们设全部$n$个数含有公因子$dk$且全部数互不相同的方案数是$f(d)$,记$x = (\left \lceil \frac{L}{K} \right \rceil - \left \lfloor \frac{H}{k} \right \rfloor + 1)$
那么$f(d) = (x^{n} - x)$
但是这样不是完全对的,因为这样子相当于把最大公因数是$2k,3k...$的情况也考虑进去了,我们最后还要容斥掉$f(2) f(3)...$这些数
其实就是一个莫比乌斯函数啦……线性筛一波
答案$ans = \sum_{i = 1}^{x - 1}f_{i} * \mu _{i}$
最后注意当$\left \lceil \frac{L}{K} \right \rceil$为$1$的时候,全部都选1也是一种可行的方案。
时间复杂度$O(nlogn)$
Code:
#include <cstdio>
using namespace std;
typedef long long ll; const int N = 1e5 + ;
const ll P = 1e9 + ; int n, ln, rn, k, pCnt = , pri[N];
ll mu[N], f[N];
bool np[N]; inline ll pow(ll x, ll y) {
ll res = ;
for(; y > ; y >>= ) {
if(y & ) res = res * x % P;
x = x * x % P;
}
return res;
} inline void sieve() {
mu[] = 1LL;
for(int i = ; i <= rn - ln; i++) {
if(!np[i]) {
mu[i] = -1LL;
pri[++pCnt] = i;
}
for(int j = ; j <= pCnt && pri[j] * i <= rn - ln; j++) {
np[i * pri[j]] = ;
if(i % pri[j] == ) break;
else mu[i * pri[j]] = -mu[i];
}
}
} int main() {
scanf("%d%d%d%d", &n, &k, &ln, &rn); /* if(ln % k) ln = ln / k + 1;
else ln /= k; */
ln = (ln + k - ) / k, rn /= k;
if(ln > rn) return puts(""), ; sieve(); for(int i = ; i <= rn - ln; i++) {
int l = ln, r = rn;
/* if(l % i) l = l / i + 1;
else l /= i; */
l = (l + i - ) / i, r /= i;
if(l > r) continue;
f[i] = (pow(r - l + , n) - (r - l + ) + P) % P;
} ll ans = ;
for(int i = ; i <= rn - ln; i++)
ans = (ans + f[i] * mu[i] % P + P) % P;
if(ln == ) ans = (ans + 1LL) % P;
printf("%lld\n", ans);
return ;
}
Luogu 3172 [CQOI2015]选数的更多相关文章
- luogu P3172 [CQOI2015]选数
传送门 颓了一小时柿子orz 首先题目要求的是\[\sum_{x_1=l}^{r}\sum_{x_2=l}^{r}...\sum_{x_n=l}^{r}[gcd(x_1,x_2...x_n)=k]\] ...
- [CQOI2015]选数(莫比乌斯反演,杜教筛)
[CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- bzoj3930[CQOI2015]选数 容斥原理
3930: [CQOI2015]选数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1383 Solved: 669[Submit][Status] ...
- 洛谷 [CQOI2015]选数 解题报告
[CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
- BZOJ3930: [CQOI2015]选数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...
- 【刷题】BZOJ 3930 [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- P3172 [CQOI2015]选数(莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P3172 [题解] https://www.luogu.org/blog/user29936/solutio ...
随机推荐
- New Concept English three (54)
打字练习: 27w/m 45errors We have been brought up to fear insects. We regard them as unnecessary creature ...
- ACM学习历程—Hihocoder 1139 二分·二分答案(bfs)
http://hihocoder.com/problemset/problem/1139 这题提示上写的是二分,但是感觉不二分应该也可以,至少题目是AC的... 二分的思想就是二分答案的值,看能不能在 ...
- Linux下全局安装composer方法
1.下载composer curl -sS https://getcomposer.org/installer | php 2.将composer.phar文件移动到bin目录以便全局使用compos ...
- shell 实现闰年的判断
#!/bin/shecho "please input the year"read year let "n1=$year % 4"let "n2=$y ...
- Operating System-进程间互斥的问题-生产者&&消费者引入
之前介绍的几种解决进程间互斥的方案,不管是Peterson方案还是TSL指令的方式,都有一个特点:当一个进程被Block到临界区外面时,被Block的进程会一直处于忙等待的状态,这个不但浪费了CPU资 ...
- virtualvm一次插件安装想到的
在麒麟操作系统visualvm安装插件失败,因为使用的内网,所以在官网下载了插件到本地:因为本地安装的jdk1.6,为了享受jdk1.8,在visualvm文件中增加了对于jdk1.8的引用: exp ...
- C# 保护进程不被结束(源代码)防任务管理器结束进程
C# 保护进程不被结束(源代码)防任务管理器结束进程 Posted on 2013-03-25 16:03 快乐家++ 阅读(3173) 评论(3) 编辑 收藏 闲来无事,英语又学的太痛苦.看到我妈妈 ...
- Poj 1631 Bridging signals(二分+DP 解 LIS)
题意:题目很难懂,题意很简单,求最长递增子序列LIS. 分析:本题的最大数据40000,多个case.用基础的O(N^2)动态规划求解是超时,采用O(n*log2n)的二分查找加速的改进型DP后AC了 ...
- 机器学习:PCA(降噪)
一.噪音 噪音产生的因素:可能是测量仪器的误差.也可能是人为误差.或者测试方法有问题等: 降噪作用:方便数据的可视化,使用样本特征更清晰:便于算法操作数据: 具体操作:从 n 维降到 k 维,再讲降维 ...
- HTTP-Runoob:HTTP状态码
ylbtech-HTTP-Runoob:HTTP状态码 1.返回顶部 1. HTTP状态码 当浏览者访问一个网页时,浏览者的浏览器会向网页所在服务器发出请求.当浏览器接收并显示网页前,此网页所在的服务 ...