传送门

分析

首先这是一个询问一段区间内的个数的问题,所以我们可以用差分的思想用sum(R)-sum(L-1)。然后我们考虑如何求出sum(n),我们用dp[i][j][k][t]表示考虑到第i位,最后一个数是j,是否已经小于n和是否已经考虑完前导零。至于转移和一般的套路一样,详见代码。注意最后记得考虑n自己。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
long long a[],dp[][][][];
inline long long go(long long n){
if(!n)return ;
long long m=n,i,j,k,cnt=;
long long h=,lo=;
while(){
if(m<h&&m>=lo)break;
h*=,lo*=;
}
while(lo){
a[++cnt]=m/lo;
m%=lo;
lo/=;
}
memset(dp,,sizeof(dp));
dp[][][][]=;
a[]=;
for(i=;i<=cnt;i++){
for(j=;j<=a[i];j++){
k=a[i-];
if(abs(j-k)>=){
if(j<a[i])dp[i][j][][]+=dp[i-][k][][];
else dp[i][j][][]+=dp[i-][k][][];
}
if(!k){
if(j<a[i]&&j)dp[i][j][][]+=dp[i-][][][];
else if(j<a[i]&&!j)dp[i][j][][]+=dp[i-][][][];
else if(!j)dp[i][j][][]+=dp[i-][][][];
else dp[i][j][][]+=dp[i-][][][];
}
}
for(j=;j<=;j++){
for(k=;k<=;k++){
if(abs(j-k)>=){
dp[i][j][][]+=dp[i-][k][][];
}
if(!k){
if(j)dp[i][j][][]+=dp[i-][k][][];
else dp[i][j][][]+=dp[i-][k][][];
}
}
}
}
long long ans=dp[cnt][a[cnt]][][];
for(i=;i<=;i++)
ans+=dp[cnt][i][][];
return ans;
}
int main(){
long long a,b;
scanf("%lld%lld",&a,&b);
cout<<go(b)-go(a-)<<endl;
return ;
}

p2657 windy数的更多相关文章

  1. 洛谷 - P2657 - windy数 - 数位dp

    https://www.luogu.org/problemnew/show/P2657 不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. 这道题是个显然到不能再显然的数位dp了. 来个 ...

  2. 洛谷P2657 windy数 [SCOI2009] 数位dp

    正解:数位dp 解题报告: 传送门! 这题一看就是个数位dp鸭,"不含前导零且相邻两个数字之差至少为2"这种的 然后就直接套板子鸭(板子戳总结,懒得放链接辣QAQ 然后就是套路 然 ...

  3. 洛谷P2657 windy数

    传送 裸的数位dp 看这个题面,要求相邻两个数字之差至少为2,所以我们记录当前填的数的最后一位 同时要考虑毒瘤的前导0.如果填的数前面都是0,则这一位填0是合法的. emmm具体的看代码叭 #incl ...

  4. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  5. P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B ...

  6. 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]

    题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...

  7. 洛谷 P2657 [SCOI2009]windy数 解题报告

    P2657 [SCOI2009]windy数 题目描述 \(\tt{windy}\)定义了一种\(\tt{windy}\)数.不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(\tt{wi ...

  8. 洛谷——P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目大意: windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和 ...

  9. C++ 洛谷 P2657 [SCOI2009]windy数 题解

    P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...

随机推荐

  1. nyoj-67-三角形面积(S=(1/2)*(x1y2+x2y3+x3y1-x1y3-x2y1-x3y2))

    题目链接 /* Name:nyoj-67-三角形面积 Copyright: Author: Date: 2018/4/26 16:44:47 Description: 三角形的三个顶点坐标求其面积的公 ...

  2. 一个Bug 差点让服务器的文件系统崩溃

    昨天,公司的美国客户发邮件给我,说我的软件出问题了,我查来查去,发现居然是服务器上一个目录无法删除,一删除就报 cannot read from the source file or disk. 如果 ...

  3. 12.Selenium+Python案例 -- 今日头条(获取科技栏目的所有新闻标题)

    一:具体代码实现 # -*- coding: utf-8 -*-# @Time : 2018/7/26 16:33# @Author : Nancy# @Email : NancyWangDL@163 ...

  4. Spark Shuffle大揭秘

    什么是Shuffle: Shuffle中文翻译为“洗牌”,需要Shuffle的关键原因是某种具有共同特征的数据需要最终汇聚到一个计算节点上进行计算. Shuffle面临的问题: 1. 数据量非常大: ...

  5. 前用户sudo免密码

      Ubuntu 设置当前用户sudo免密码 方法1 # 备份 /etc/sudoers sudo cp /etc/sudoers . #打开 /etc/sudoers sudo visudo # 在 ...

  6. GWT 中实现“CSS Sprite”

    近段时间在弄GWT这一块,开发中遇到的一些不错的方法或者技巧,在此做个分享和记录,有不同见解可发表意见  互相切磋. 在web开发中,必然涉及到网页中的图片,本地浏览网页,要下载在服务器端的图片,然后 ...

  7. C++字符集问题终极分析(可解决乱码问题)

    最近研究vc,windows的东西真是很傻瓜,啥都给你做好,有个好处就是开发方便了. 有个弊端就是完全按微软的一套进行,规则都是它定的,你得知道它的很多api, 开发出来的代码效率不高,不过却可以比较 ...

  8. 机器学习:SVM(基础理解)

    一.基础理解 1)简介 SVM(Support Vector Machine):支撑向量机,既可以解决分类问题,又可以解决回归问题: SVM 算法可分为:Hard Margin SVM.Soft Ma ...

  9. c++ 插入排序算法

    第一.算法描述       直插排序很容易理解,在我们打扑克牌的时候,每一次摸完牌,都会按数字大小或者花色,插入到合适的位置,直到摸完最后一张牌,我们手中的牌已经按大小顺序排列好了.这整个过程就是一个 ...

  10. 生产者与消费者---demo2---boke

    假设有这样一种情况,有一个桌子,桌子上面有一个盘子,盘子里只能放一颗鸡蛋,A专门往盘子里放鸡蛋,如果盘子里有鸡蛋,则一直等到盘子里没鸡蛋,B专门从盘子里拿鸡蛋,如果盘子里没鸡蛋,则等待直到盘子里有鸡蛋 ...