【Luogu P2257】YY 的 GCD
题目
求:
\]
有 \(T\) 组数据, \(T\le 10^4, n, m\le 10^7\)
分析
莫比乌斯反演:
& \sum_{i = 1}^n \sum_{j = 1}^m [\gcd(i, j) \in \mathbb P]\\
= & \sum_{p \in \mathbb P, p\le \min(n, m)}\sum_{i = 1}^n \sum_{j = 1}^m [\gcd(i, j) = p]\\
\end{align*}
\]
设 \(f(x) = \sum_{i = 1}^n \sum_{j = 1}^m [\gcd(i, j) = x]\), $F(x) = \sum_{i = 1}^n \sum_{j = 1}^m [x\ |\gcd(i, j)]=\left\lfloor \frac nx\right\rfloor\left\lfloor \frac mx\right\rfloor $
则有:
\]
故有:
& \sum_{p \in \mathbb P, p\le \min(n, m)}\sum_{i = 1}^n \sum_{j = 1}^m [\gcd(i, j) = p]\\
= & \sum_{p \in \mathbb P, p\le \min(n, m)} f(p) \\
= & \sum_{p \in \mathbb P, p\le \min(n, m)} \sum_{p|d,d\le \min(n, m)} \mu(\frac dp) \left\lfloor \frac nd\right\rfloor\left\lfloor \frac md\right\rfloor \\
= & \sum_{d = 1}^{\min(n, m)} \sum_{p \in \mathbb P,p|d, p\le \min(n, m)} \mu(\frac dp) \left\lfloor \frac nd\right\rfloor\left\lfloor \frac md\right\rfloor \\
= & \sum_{d = 1}^{\min(n, m)} \left\lfloor \frac nd\right\rfloor\left\lfloor \frac md\right\rfloor \sum_{p \in \mathbb P,p|d, p\le \min(n, m)} \mu(\frac dp)
\end{align*}
\]
设 $g(x) = \sum_{p \in \mathbb P,p|x, p\le \min(n, m)} \mu(\frac xp) $
求法(暴力出奇迹, 经测试下面算法耗时不到 \(0.5 s\)):
void get_g(int n) {
for(int i = 1; i <= n; i++) {
int tmp = i;
while(tmp != 1) {
g[i] += mobius[i / s_factor[tmp]];
int p = s_factor[tmp];
if(tmp % (p * p) == 0) break;
for(; tmp % p == 0; tmp /= p);
}
g_prefix[i] = g_prefix[i - 1] + g[i];
}
}
有上式等于:
\]
对于 \(\left\lfloor \frac nd\right\rfloor\left\lfloor \frac md\right\rfloor\) 相同的值整除分块即可.
代码
#include <bits/stdc++.h>
typedef long long Int64;
const int kMaxSize = 1e7 + 5;
int s_factor[kMaxSize], prime[kMaxSize], mobius[kMaxSize], g[kMaxSize],
g_prefix[kMaxSize], prime_tot = 0;
bool isn_prime[kMaxSize];
void euler_sieve(int n) {
mobius[1] = 1;
isn_prime[0] = isn_prime[1] = true;
for(int i = 2; i <= n; i++) {
if(!isn_prime[i]) {
prime[prime_tot++] = i;
s_factor[i] = i;
mobius[i] = -1;
}
for(int j = 0; j < prime_tot && i * prime[j] <= n; j++) {
isn_prime[i * prime[j]] = true;
s_factor[i * prime[j]] = prime[j];
mobius[i * prime[j]] = -mobius[i];
if(i % prime[j] == 0) {
mobius[i * prime[j]] = 0;
break;
}
}
}
}
void get_g(int n) {
for(int i = 1; i <= n; i++) {
int tmp = i;
while(tmp != 1) {
g[i] += mobius[i / s_factor[tmp]];
int p = s_factor[tmp];
if(tmp % (p * p) == 0) break;
for(; tmp % p == 0; tmp /= p);
}
g_prefix[i] = g_prefix[i - 1] + g[i];
}
}
int main() {
euler_sieve(1e7);
get_g(1e7);
int t;
scanf("%d", &t);
while(t--) {
int n, m;
Int64 ans = 0;
scanf("%d%d", &n, &m);
if(!n) break;
for(int l = 1, r; l <= n && l <= m; l = r + 1) {
r = std::min(n / (n / l), m / (m / l));
ans += (Int64)(n / l) * (m / l) * (g_prefix[r] - g_prefix[l - 1]);
}
printf("%lld\n", ans);
}
return 0;
}
【Luogu P2257】YY 的 GCD的更多相关文章
- [Luogu P2257] YY的GCD (莫比乌斯函数)
题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...
- Luogu P2257 YY的GCD
莫比乌斯反演第一题.莫比乌斯反演入门 数论题不多BB,直接推导吧. 首先,发现题目所求\(ans=\sum_{i=1}^n\sum_{j=1}^m [\gcd(i,j)=prime]\) 考虑反演,我 ...
- 【题解】Luogu P2257 YY的GCD
原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 显然题目的答案就是\[ Ans=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)=prime]\] 我们先设设F(n)表示满足\ ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- 洛谷 P2257 YY的GCD
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...
- P2257 YY的GCD
P2257 YY的GCD 题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 k ...
- 题解 P2257 YY的GCD
P2257 YY的GCD 解题思路 果然数论的题是真心不好搞. 第一个莫比乌斯反演的题,好好推一下式子吧..(借鉴了blog) 我们要求的答案就是\(Ans=\sum\limits_{i=1}^{n} ...
- P2257 YY的GCD (莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P2257 // luogu-judger-enable-o2 /* -------------------- ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
- 洛谷 P2257 YY的GCD 题解
原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...
随机推荐
- IOS 数据加密总结(及MD5加密)
数据安全总结 1.网络数据加密1> 加密对象:隐私数据,比如密码.银行信息2> 加密方案* 提交隐私数据,必须用POST请求* 使用加密算法对隐私数据进行加密,比如MD53> 加密增 ...
- 背包问题模板,POJ(1014)
题目链接:http://poj.org/problem?id=1014 背包问题太经典了,之前的一篇博客已经讲了背包问题的原理. 这一个题目是多重背包,但是之前的枚举是超时的,这里采用二进制优化. 这 ...
- phpmyadmin 打开数据表较多,数据量较大的数据库时出现超时的解决办法
用phpmyadmin打开数据表较多,数据量较大的数据库时,会出现超时,或者等半天打开了说数据库没有表.并且即便打开了,再进行其他浏览,编辑,sql等操作,页面也是相当慢的,慢等几乎无法忍受.这里慢也 ...
- 使用QT开发GoogleMap瓦片显示和下载工具(1)——QT开发环境准备
由于是第一次使用qt,光是QT的安装和调试就费了好大功夫,汗一个,下面记录下过程和遇到的问题的解决方法吧. 下载QT 直接Google搜索“QT”,进入官网http://qt-project.org/ ...
- cudaMalloc和cudaMallocPitch
原文链接 偶有兴趣测试了一下题目中提到的这两个函数,为了满足对齐访问数据,咱们平时可能会用到cudamallocPitch,以为它会带来更高的效率.呵呵,这里给出一段测试程序,大家可以在自己的机器上跑 ...
- Python 2.x 和 3.x的区别
Python有两个版本,2.x 和 3.x ,两个版本不兼容,3.x 不不考虑对2.x代码的向后兼容. 在3.x中,一些语法,内建函数和对象的行为都有所调整. 大部分的python库都支持 pytho ...
- c/c++基础
如果有你认为重要的知识点,而我这却没有记录下来的,那么期待你分享给我(^U^)ノ~YO. 1.在结构体中,符号->的前面是指针变量,符号.的前面是普通变量. 程序中a->b等价于(*a ...
- 协议:Http Https TCP/IP
Http协议 1.1 Http概述 HTTP(hypertext transport protocol),即超文本传输协议.这个协议详细规定了浏览器和万维网服务器之间互相通信的规则.HTTP就是一个通 ...
- python备份mysql数据库
介绍使用python结合mysqldump对mysql数据库进行备份 import os import sys import configparser import time def test_fil ...
- TSMessages,非HUD风格的iOS提示框(附官方demo BUG修复方案)
优势 先看效果 个人觉得这种提示效果用在UITableView上要比HUD优雅美观,而其他情况下的提示,用HUD比较好 源码简介易懂,用起来也很方便 导入 pod导入相对很简单,主要讲怎么手动导入这个 ...