首先从单层神经网络开始介绍

最简单的单层神经网络可以看成是多个Perception的线性组合,这种简单的组合可以达到一些复杂的boundary。

比如,最简单的逻辑运算AND  OR NOT都可以由多个perception构成的单层神经网络模拟。

但是,单层感知器神经网络能力再强也是有限的,有些逻辑也无法完成。比如,XOR异或运算。

这个时候,就很自然地引出了多层神经网络。

通过这个例子,可以看到多层的神经网络的表达能力要比单层的要强。

上面给出了看待神经网络的一种方式:

1)从原始输入开始一直到OUTPUT之前的那一层,可以看做是对输入x做各种transform

2)与OUTPUT紧挨着的那一层,可以看做是隐层输出做线性组合

并且,在这里规定了神经网络'regression'类型用sqaure error来衡量。

这里有个环节值得说道一下,我们来比较集中transform的方式:

1)如果是sign的:是表达力很强,但是由于是离散的,不好优化

2)如果是linear的:好优化,但整个网络也都相当于是个线性的了,失去了较强的学习能力

3)popular choice 是一种tanh(S)的转换器:

  a. 这种转换器介于sign和linear之间,相当于是模拟化的sign

  b. 同时这个转换函数的导数的性质又很好(与逻辑回归类似)

这样,神经网络的各个环节是啥已经搞清楚了。林接下来给出了神经网络各个部分的符号表示:

这里有个地方需要注意:每个隐层都有一个bias神经元,它与下一层的每个神经元都有权重连线(为了简便,bias设为常数1,对下一层每个神经元的偏置影响体现在权重连线上)

到此,可以给出神经网络的一个物理解释:前一层的输出作为厚一层的输入,每两个隐层之间的权重相当于两个隐层之间的匹配模式。

模型构造完成了,接下来就是如何学习模型的参数。

gradient boosting方法对于多层神经网络来说,有些太困难。

在这里,还是采用前人的梯度下降的思路来求解。问题的关键就是如何高效地计算出错误对于每个权重的导数。

这里先从最后一层的权重开始求解:这个求解利用了求导链式法则,讲每个神经元的输入分数s作为中间连接,就可以直观求解了。

林在这里将error与每个神经元的输入分数s的导数抽象出来,记为一个特殊符号delta。这样,就可以表示出来任意的error对于权重w的导数了。

每个神经元的输出x是很好求的(只要给定w,带入就可以求得了);因此,下面只需要关注,如何把error对于权重w的导数求解出来。

这里求解delta采用了递归的思路:

1)sl经过tanh的计算→xl

2)xl经过下一层的权重→sl+1

沿着这两个思路,就把sl与sl+1给联系起来了,因此也获得了delta的递推关系。

又因为最后一层的delta是可以直接算出来的,因此,delta的计算思路也出来了,可以backwards的思路算出来。

上面就是伟大的BP神经网络求解算法,的原型。。。

1)S:选点

2)forward:(initial w)求x

3)backward:利用反向递推关系,求解delta

4)GD:对每个隐层权重更新

若干轮之后,返回整个神经网络的‘权重+偏置’参数

1)3)可以同步去做,获得若干个x*delta,然后average的动作后作用于4)(一周前面试的时候还被面试官问到了这个问题,现在看来就是取个平均,就可以获得mini-batch的效果了

下面再补充一些NN的其他问题:

1)神经网络由于太太复杂了,因此GD的方法难免落入local minimum

2)有关初始化选取W的问题,无外乎两种选择:

  a. 如果W选的很大,wx就会很大,优化作用不明显(联想tanh的函数图像,如果wx的绝对值很大,wx下一轮即使有比较大的变化,神经元的输出也变化不大了)

  b. 因此,通常的做法是w取相对小一些,随机一些的值,这样貌似能好一些

有关VC Dimension的问题:神经网络越复杂,VC就越大。

只要神经网络的层数一旦多起来,神经元一旦多起来,VC Dimension自然就起来了。因此,regularization自然不可避免。

最常规的做法是损失函数中加一个L2 regularizer惩罚项。

但:

1)L2惩罚项的作用效果是不让每个权重分量太大,但确实成比例变化的(Large的shrink large, small的shrink small),总的来说没啥改变

2)L1惩罚项倒是可以让某些项目为0了,但是not differentiable,所以不好求解

因此,林介绍了一种新的regularizer:weight-elimination regularizer:

1)无论是原来是大的还是小的w分量,都会有同等效果的shrink(大的减小了,小的可能减没了)

2)differentiable,求解比L1容易一些

在这一节课的问题中,给出了weight-elimination的求导结果:

通过这个结果分析,其实我TM啥也分析不出来。。。有功夫再看原始的论文吧:http://papers.nips.cc/paper/323-generalization-by-weight-elimination-with-application-to-forecasting.pdf

另外,还有一种stop early的方法防止过拟合:

这个方法的背后思想史:

1)有理论保证:迭代的次数愈多,dvc就越大

2)联合VC Dimension理论,early stopping有助于防治过拟合

【Neural Network】林轩田机器学习技法的更多相关文章

  1. 【Radial Basis Function Network】林轩田机器学习技法

    这节课主要讲述了RBF这类的神经网络+Kmeans聚类算法,以及二者的结合使用. 首先回归的了Gaussian SVM这个模型: 其中的Gaussian kernel又叫做Radial Basis F ...

  2. 【Matrix Factorization】林轩田机器学习技法

    在NNet这个系列中讲了Matrix Factorization感觉上怪怪的,但是听完第一小节课程就明白了. 林首先介绍了机器学习里面比较困难的一种问题:categorical features 这种 ...

  3. 【Deep Learning】林轩田机器学习技法

    这节课的题目是Deep learning,个人以为说的跟Deep learning比较浅,跟autoencoder和PCA这块内容比较紧密. 林介绍了deep learning近年来受到了很大的关注: ...

  4. 【Random Forest】林轩田机器学习技法

    总体来说,林对于random forest的讲解主要是算法概况上的:某种程度上说,更注重insights. 林分别列举了Bagging和Decision Tree的各自特点: Random Fores ...

  5. 【Decision Tree】林轩田机器学习技法

    首先沿着上节课的AdaBoost-Stump的思路,介绍了Decision Tree的路数: AdaBoost和Decision Tree都是对弱分类器的组合: 1)AdaBoost是分类的时候,让所 ...

  6. 【Adaptive Boosting】林轩田机器学习技法

    首先用一个形象的例子来说明AdaBoost的过程: 1. 每次产生一个弱的分类器,把本轮错的样本增加权重丢入下一轮 2. 下一轮对上一轮分错的样本再加重学习,获得另一个弱分类器 经过T轮之后,学得了T ...

  7. 【Linear Support Vector Machine】林轩田机器学习技法

    首先从介绍了Large_margin Separating Hyperplane的概念. (在linear separable的前提下)找到largest-margin的分界面,即最胖的那条分界线.下 ...

  8. 【Support Vector Regression】林轩田机器学习技法

    上节课讲了Kernel的技巧如何应用到Logistic Regression中.核心是L2 regularized的error形式的linear model是可以应用Kernel技巧的. 这一节,继续 ...

  9. 【Dual Support Vector Machine】林轩田机器学习技法

    这节课内容介绍了SVM的核心. 首先,既然SVM都可以转化为二次规划问题了,为啥还有有Dual啥的呢?原因如下: 如果x进行non-linear transform后,二次规划算法需要面对的是d`+1 ...

随机推荐

  1. sublim的正则匹配(待续)

    ctrl+H 打开匹配模式 打开正则匹配模式 正则匹配的一些方法:  点代表的是任意字符.* 代表的是取 0 至 无限长度问号代表的是非贪婪模式.三个链接在一起是取尽量少的任意字符,一般不会这么单独写 ...

  2. RPC电源监控总结

    首先说一下监控机箱的监控原理. 设备的信息传输是通过tcp或者udp传输十六进制的数然后进行解析,传输数据. 如图: 设备反馈信息也是返回来的十六机制,然后按照对应的位置进将数据解析成二进制,用二进制 ...

  3. 基于LBS的多人聊天

  4. IOS Post请求(请求服务器)

    @interface HMViewController () @property (weak, nonatomic) IBOutlet UITextField *usernameField; @pro ...

  5. iis 发布失败原因总结

    3篇文章 1. https://www.cnblogs.com/adzhouyang/p/7357086.html 2..https://blog.csdn.net/li_ser/article/de ...

  6. 【转】基于JavaMail的Java邮件发送

    http://blog.csdn.net/xietansheng/article/details/51673073 http://blog.csdn.net/xietansheng/article/d ...

  7. Shell编程学习之重定向

    这一篇讲一下重定向 有些时候你想要保存某些命令产生的输出而不是在显示器上显示它. 为了应对这样的问题 bash shell 也就提供了一些重定向的操作符. 我们先了解一些基本的应用. 输出重定向 输出 ...

  8. centos安装django

    1.如果默认安装的是python2.6,先升级至python2.7 参考:http://www.cnblogs.com/tiger2soft/p/5677843.html 2.安装pip 先下载get ...

  9. 内置函数SQLCODE和SQLERRM的使用

    由于ORACLE的错信息最大长度是512字节,为了得到完整的错误提示信息,我们可用 SQLERRM 和 SUBSTR 函数一起得到错误提示信息,方便进行错误,特别是如果WHEN OTHERS异常处理器 ...

  10. Java - 基础数据类型的极值