fastText 模型输入一个词的序列(一段文本或者一句话),输出这个词序列属于不同类别的概率。
序列中的词和词组组成特征向量,特征向量通过线性变换映射到中间层,中间层再映射到标签。
fastText 在预测标签时使用了非线性激活函数,但在中间层不使用非线性激活函数。
fastText 模型架构和 Word2Vec 中的 CBOW 模型很类似。不同之处在于,fastText 预测标签,而 CBOW 模型预测中间词。

fasttext结构

xi

  • $X_i$: 一个句子的特征,初始值为随机生成(也可以采用预训练的词向量)
  • hidden:$X_i$的平均值 x
  • output: 样本标签

目标函数

N:样本个数

$y_n$:第n个样本对应的类别

f:损失函数softmaxt

$x_n$:第n个样本的归一化特征

A:权重矩阵(构建词,embedding)

B:权重举证(隐层到输出层)

词向量初始化

一个句子的embedding为[$iw_1,iw_2,....iw_n,ow_1,ow_2,...ow_s$]

$iw_i$:语料中出现的词,排在数组的前面

$ow_i$:n-gram或n-char特征

初始化为随机数, 如果提供预训练的词向量,对应的词采用预训练的词向量

hierarchical Softmax

当语料类别较多时,使用hierarchical Softmax(hs)减轻计算量
hs利用Huffman 树实现,词(生成词向量)或label(分类问题)作为叶子节点
根据词或label的count构建Huffman 树,则叶子到root一定存在一条路径
利用逻辑回归二分类计算loss

n-gram和n-char

asttext方法不同与word2vec方法,引入了两类特征并进行embedding。其中n-gram颗粒度是词与词之间,n-char是单个词之间。两类特征的存储均通过计算hash值的方法实现。

n-gram

示例: who am I? n-gram设置为2

n-gram特征有,who, who am, am, am I, I
n-char
示例: where, n=3, 设置起止符<, >
    n-char特征有,<wh, whe, her, ere, er>

FastText词向量与word2vec对比

FastText= word2vec中 cbow + h-softmax的灵活使用

模型的输出层:word2vec的输出层,对应的是每一个term,计算某term的概率最大;而fasttext的输出层对应的是
分类的label。不过不管输出层对应的是什么内容,起对应的vector都不会被保留和使用;
模型的输入层:word2vec的输入层,是 context window 内的term;而fasttext 对应的整个sentence的内容,包括term,也包括 n-gram的内容;
两者本质的不同,体现在 h-softmax的使用。  
Word2vec的目的是得到词向量,该词向量 最终是在输入层得到,输出层对应的 h-softmax 也会生成一系列的向量,但最终都被抛弃,不会使用。
fasttext则充分利用了h-softmax的分类功能,遍历分类树的所有叶节点,找到概率最大的label(一个或者N个)。

Fasttext原理的更多相关文章

  1. 转:fastText原理及实践(达观数据王江)

    http://www.52nlp.cn/fasttext 1条回复 本文首先会介绍一些预备知识,比如softmax.ngram等,然后简单介绍word2vec原理,之后来讲解fastText的原理,并 ...

  2. FastText算法原理解析

    1. 前言 自然语言处理(NLP)是机器学习,人工智能中的一个重要领域.文本表达是 NLP中的基础技术,文本分类则是 NLP 的重要应用.fasttext是facebook开源的一个词向量与文本分类工 ...

  3. 超快的 FastText

    Word2Vec 作者.脸书科学家 Mikolov 文本分类新作 fastText:方法简单,号称并不需要深度学习那样几小时或者几天的训练时间,在普通 CPU 上最快几十秒就可以训练模型,得到不错的结 ...

  4. [转] fastText

    mark- from : https://www.jiqizhixin.com/articles/2018-06-05-3 fastText的起源 fastText是FAIR(Facebook AIR ...

  5. 模型介绍之FastText

    模型介绍一: 1. FastText原理及实践 前言----来源&特点 fastText是Facebook于2016年开源的一个词向量计算和文本分类工具,在学术上并没有太大创新.但是它的优点也 ...

  6. FastText算法

    转载自: https://www.cnblogs.com/huangyc/p/9768872.html 0. 目录 1. 前言 2. FastText原理 2.1 模型架构 2.2 层次SoftMax ...

  7. NLP系列文章:子词嵌入(fastText)的理解!(附代码)

    1. 什么是fastText 英语单词通常有其内部结构和形成⽅式.例如,我们可以从"dog""dogs"和"dogcatcher"的字⾯上推 ...

  8. 层次softmax函数(hierarchical softmax)

    一.h-softmax 在面对label众多的分类问题时,fastText设计了一种hierarchical softmax函数.使其具有以下优势: (1)适合大型数据+高效的训练速度:能够训练模型“ ...

  9. Task6.神经网络基础

    BP: 正向计算loss,反向传播梯度. 计算梯度时,从输出端开始,前一层的梯度等于activation' *(与之相连的后一层的神经元梯度乘上权重的和). import torch from tor ...

随机推荐

  1. vuex的学习和理解

    初识Vuex: vuex是 vue官方推荐的一个状态管理器,也是vue专用的一个插件.当我们遇到很多状态改变时,组件之间的通信就会变得复杂,这时候vuex的强大就体现出来了. Vuex 应用的核心就是 ...

  2. 方差分析 | ANOVA | 原理 | R代码 | 进阶 | one way and two way

    原理 比较两组就用t-test,比较三组及以上就用ANOVA.注意:我们默认说的都是one way ANOVA,也就是对group的分类标准只有一个,比如case和control(ABCD多组),tw ...

  3. 关于spark中DatatFrame函数操作中isin方法的使用

    需求: 1.需要从一张mysql数据表中获取并筛选数据 2.通过spark将该表读进来,形成一个df:DataFrame,有一个集合 val list = List[String]("小李& ...

  4. git 的详解

    https://blog.csdn.net/youzhouliu/article/details/78952453

  5. JS回调函数中的this指向(详细)

    首先先说下正常的this指向问题 什么是this:自动引用正在调用当前方法的.前的对象. this指向的三种情况 1. obj.fun()     fun中的this->obj,自动指向.前的对 ...

  6. 『TensorFlow』专题汇总

    TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...

  7. mac电脑上不能用移动硬盘的原因和方法

    原因: 一般性是因为这个移动硬盘的格式是 NTFS 格式的,对于这种格式的磁盘格式,在苹果系统中却是不支持往硬盘里写入数据的 解决方法: 方法一: ntfs的格式分区,这种格式分区与我们的苹果电脑自身 ...

  8. android使用smack实现简单登录功能

    android端采用xmpp协议实现即时通讯,在最开始的登录功能就遇到了不少障碍.首先在官网(https://www.igniterealtime.org/projects/openfire/)下载o ...

  9. Spring IOC、AOP、Transaction、MVC小结

    1.IOC.AOP:把对象交给Spring进行管理,通过面向切面编程来实现一些“模板式”的操作,使得程序员解放出来,可以更多的关注业务实现.                             - ...

  10. 通过编写一个简单的日志类库来加深了解C#的文件访问控制

    在程序的开发调试过程及发布运行后的状态监控中,日志都有着极其重要的分量,通过在关键逻辑节点将关键数据记录到日志文件当中能帮助我们尽快找到程序问题所在.网上有不少专业成熟的日志组件可用,比如log4ne ...