在FPGA实现算法过程中,大多数情况是用占用资源较少,延迟较低的定点数代替浮点数参与运算。那么浮点与定点数之间的区别以及转换方式是怎么的?下边这篇博文详细说明了这一问题。虽然是针对DSP芯片的,但思想是完全相通的。原文标题及链接为: DSP基础--定点小数运算 http://www.eepw.com.cn/article/17893.htm

  许多DSP芯片只支持整数运算,如果现在这些芯片上进行小数运算的话,定点小数运算应该是最佳选择了,此外即使芯片支持浮点数,定点小数运算也是最佳的速度选择。

DSP世界中,由于DSP芯片的限制,经常使用定点小数运算。所谓定点小数,实际上就是用整数来进行小数运算。下面先介绍定点小数的一些理论知识,然后以C语言为例,介绍一下定点小数运算的方法。在TI C5000 DSP系列中使用16比特为最小的储存单位,所以我们就用16比特的整数来进行定点小数运算。

先从整数开始,16比特的储存单位最多可以表示0x0000到0xffff,65536种状态,如果它表示C语言中的无符号整数的话,就是从0到65535。如果需要表示负数的话,那么最高位就是符号位,而剩下的15位可以表示32768种状态。这里可以看出,对于计算机或者DSP芯片来说,符号并没有什么特殊的储存方式,其实是和数字一起储存的。为了使得无论是无符号数还是符号数,都可以使用同样的加法减法规则,符号数中的负数用正数的补码表示。

我们都知道-1 + 1 =0,而0x0001表示1,那么-1用什么来表示才能使得-1 + 1 =0呢?答案很简单:0xffff。现在就可以打开Windows的计算器,用16进制计算一下0xffff+0x0001,结果是0x10000。那么0x10000和0x0000等价麽,我们刚才说过用16比特来表达整数,最高位的1是第17位,这一位是溢出位,在运算寄存器中没有储存这一位,所以结果是低16位,也就是0x0000。现在我们知道负数的表达方式了。举个例子:-100。首先我们需要知道100的16进制,用计算器转换一下,可以知道是0x0064,那么-100就是0x10000 - 0x0064,用计算器算一下得0xff9c。还有一种简单的转换符号的方法,就是取反加一:把数x写成二进制格式,每位0变1,1变0,最后把结果加1就是-x了。

好,复习了整数的相关知识之后,我们进入定点小数运算环节。所谓定点小数,就是小数点的位置是固定的。我们是要用整数来表示定点小数,由于小数点的位置是固定的,所以就没有必要储存它(如果储存了小数点的位置,那就是浮点数了)。既然没有储存小数点的位置,那么计算机当然就不知道小数点的位置,所以这个小数点的位置是我们写程序的人自己需要牢记的。

先以10进制为例。如果我们能够计算12+34=46的话,当然也就能够计算1.2+3.4 或者 0.12+0.34了。所以定点小数的加减法和整数的相同,并且和小数点的位置无关。乘法就不同了。 12*34=408,而1.2*3.4=4.08。这里1.2的小数点在第1位之前,而4.08的小数点在第2位之前,小数点发生了移动。所以在做乘法的时候,需要对小数点的位置进行调整?!可是既然我们是做定点小数运算,那就说小数点的位置不能动!!怎么解决这个矛盾呢,那就是舍弃最低位。 也就说1.2*3.4=4.1,这样我们就得到正确的定点运算的结果了。所以在做定点小数运算的时候不仅需要牢记小数点的位置,还需要记住表达定点小数的有效位数。上面这个例子中,有效位数为2,小数点之后有一位。

现在进入二进制。我们的定点小数用16位二进制表达,最高位是符号位,那么有效位就是15位。小数点之后可以有0 - 15位。我们把小数点之后有n位叫做Qn,例如小数点之后有12位叫做Q12格式的定点小数,而Q0就是我们所说的整数。

Q12的正数的最大值是 0 111 . 111111111111,第一个0是符号位,后面的数都是1,那么这个数是十进制的多少呢,很好运算,就是 0x7fff / 2^12 = 7.999755859375。对于Qn格式的定点小数的表达的数值就它的整数值除以2^n。在计算机中还是以整数来运算,我们把它想象成实际所表达的值的时候,进行这个运算。

反过来把一个实际所要表达的值x转换Qn型的定点小数的时候,就是x*2^n了。例如 0.2的Q12型定点小数为:0.2*2^12 = 819.2,由于这个数要用整数储存, 所以是819 即 0x0333。因为舍弃了小数部分,所以0x0333不是精确的0.2,实际上它是819/2^12 =0.199951171875。

我们用数学表达式做一下总结:
x表示实际的数(*一个浮点数), q表示它的Qn型定点小数(一个整数)。
q = (int) (x * 2^n)
x = (float)q/2^n

由以上公式我们可以很快得出定点小数的+-*/算法:
假设q1,q2,q3表达的值分别为x1,x2,x3
q3 = q1 + q2   若 x3 = x1 + x2
q3 = q1 - q2   若 x3 = x1 - x2
q3 = q1 * q2 / 2^n若 x3 = x1 * x2
q3 = q1 * 2^n / q2若 x3 = x1 / x2
我们看到加减法和一般的整数运算相同,而乘除法的时候,为了使得结果的小数点位不移动,对数值进行了移动。
用c语言来写定点小数的乘法就是:
short q1,q2,q3;
....
q3=((long q1) * (long q2)) >> n;

由于/ 2^n和* 2^n可以简单的用移位来计算,所以定点小数的运算比浮点小数要快得多。下面我们用一个例子来验证一下上面的公式:
用Q12来计算2.1 * 2.2,先把2.1 2.2转换为Q12定点小数:
2.1 * 2^12 = 8601.6 = 8602
2.2 * 2^12 = 9011.2 = 9011
(8602 * 9011) >> 12 = 18923
18923的实际值是18923/2^12 = 4.619873046875 和实际的结果 4.62相差0.000126953125,对于一般的计算已经足够精确了

【转载】DSP基础--定点小数运算的更多相关文章

  1. DSP基础学习-ADC同步采样

    DSP基础学习-ADC同步采样 彭会锋 2015-04-28 20:31:06 在DSP28027 LauchPad学习过程中,关于ADC同步采样和顺序采样的区别稍加研究了一下,发现里面还真有些门道, ...

  2. DSP基础学习-ADC采样

    DSP基础学习-ADC采样 彭会锋 2015-04-27 22:30:03 在查看ADC采样例程的时候我发现了下面的代码挺有意思的 EALLOW; GpioCtrlRegs.GPAMUX2.bit.G ...

  3. [转]C# ListView 单击标题实现排序(在转载的基础上有所完善)

    using System; using System.Collections; using System.Windows.Forms; //在转载的基础上有所完善 namespace TDRFacto ...

  4. 基于INTEL FPGA硬浮点DSP实现卷积运算

    概述 卷积是一种线性运算,其本质是滑动平均思想,广泛应用于图像滤波.而随着人工智能及深度学习的发展,卷积也在神经网络中发挥重要的作用,如卷积神经网络.本参考设计主要介绍如何基于INTEL 硬浮点的DS ...

  5. python基础(四)运算

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! Python的运算符和其他语言类似 (我们暂时只了解这些运算符的基本用法,方便我们 ...

  6. (转载)Java基础知识总结

    写代码: 1,明确需求.我要做什么? 2,分析思路.我要怎么做?1,2,3. 3,确定步骤.每一个思路部分用到哪些语句,方法,和对象. 4,代码实现.用具体的java语言代码把思路体现出来. 学习新技 ...

  7. 算法与数据结构基础 - 位运算(Bit Manipulation)

    位运算基础 说到与(&).或(|).非(~).异或(^).位移等位运算,就得说到位运算的各种奇淫巧技,下面分运算符说明. 1. 与(&) 计算式 a&b,a.b各位中同为 1 ...

  8. python基础04 运算

    数学运算 print 2+2  #加法 print 1.3-4 #剪法 print 3*5 #乘法 print 4.5/1.5 #除法 print 3**2   #乘方 print 10%3   #求 ...

  9. [转载]存储基础:DAS/NAS/SAN存储类型及应用

    这篇文章转自博客教主的一篇博客存储基础:DAS/NAS/SAN存储类型及应用, 他是在张骞的这篇博客DAS,NAS,SAN在数据库存储上的应用上做了部分修改和补充.   一. 硬盘接口类型 1. 并行 ...

随机推荐

  1. React 中的key值

    在react中必须要有key值,key不是用来提升react的性能的,react中的key属性,它是一个特殊的属性,它是出现不是给开发者用的(例如你为一个组件设置key之后不能获取组件的这个key p ...

  2. asp.net core 系列 3 依赖注入服务

    一. 依赖注入概述 在软件设计的通用原则中,SOLID是非常流行的缩略语,它由5个设计原则的首字母构成:单一原则(S).开放封闭原则(O).里氏替换原则(L).接口分离原则(I).依赖反转原则(D). ...

  3. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

  4. C语言中你可能不熟悉的头文件(stdlib.h)

    C语言中你可能不熟悉的头文件<cstdlib>(stdlib.h) C Standard General Utilities Library (header) C标准通用工具库(头文件) ...

  5. Docker Compose 之进阶篇

    笔者在前文<Docker Compose 简介>和<Dcoker Compose 原理>两篇文章中分别介绍了 docker compose 的基本概念以及实现原理.本文我们将继 ...

  6. Django学习笔记(4)——Django连接数据库

    前言 在MVC或者MTV设计模式中,模型(M)代表对数据库的操作.那么如何操作数据库呢?本小节就认真学习一下.首先复习一下Django的整个实现流程 ,然后再实现一下使用数据库的整个流程,最后学习一下 ...

  7. VisualStudio,用C#写的一个开源移动APP,资产管理类项目SmoSec

    继SmoOne之后,Smobiler团队又推出一款用C#开发的APP开源项目. 这款开源项目名为SmoSec,目前包含资产管理.耗材管理两大类. 并且,未来会不断迭代,持续增加盘点.标签打印和仓库管理 ...

  8. 【默认加入持久化机制,防止消息丢失,v0.0.3】对RabbitMQ.Client进行一下小小的包装,绝对实用方便

    RabbitMQ是一个老牌的非微软的消息队列组件,一般来说应该能满足中小型公司对消息队列生产的需求,平时我们在.NET开发环境下运用它是可能会需要RabbitMQ.Client的SDK库,此库是官网提 ...

  9. 学JAVA第八天,今天用循环做了个好玩的东西

    今天用for循环做了个打印矩形的图案 代码如下: package nf;class Kest{ public static void main(String args[]){ int a=30; in ...

  10. MySQL Err(1024):Lock wait timeout exceeded; try restarting transaction

    查看事务是否占用被锁: SELECT * FROM information_schema.INNODB_TRX;查看里面的 trx_mysql_thread_id字段 show full proces ...