https://mp.weixin.qq.com/s/kWw0xce4kdCx62AflY6AzQ

1.  抢跑的nlp

nlp发展的历史非常早,因为人从计算机发明开始,就有对语言处理的需求。各种字符串算法都贯穿于计算机的发展历史中。伟大的乔姆斯基提出了生成文法,人类拥有的处理语言的最基本框架,自动机(正则表达式),随机上下文无关分析树,字符串匹配算法KMP,动态规划。

nlp任务里如文本分类,成熟的非常早,如垃圾邮件分类等,用朴素贝叶斯就能有不错的效果。20年前通过纯统计和规则都可以做机器翻译了。相比,在cv领域,那时候mnist分类还没搞好呢。

90年代,信息检索的发展提出BM25等一系列文本匹配算法,Google等搜索引擎的发展将nlp推向了高峰。相比CV领域暗淡的一些。

2.  特征抽取困难的cv

cv的前身就有一个领域叫图像处理,研究图片的压缩、滤波、边缘提取,天天摆弄着一个叫lenna的美女。

早期的计算机视觉领域受困于特征提取的困难,无论是HOG还是各种手工特征提取,都没办法取得非常好的效果。

大规模商业化应用比较困难。而同期nlp里手工特征➕svm已经搞的风生水起了。

3.  深度学习的崛起- 自动特征提取

近些年,非常火爆的深度学习模型简单可以概括为:

深度学习 = 特征提取器➕分类器

一下子解决cv难于手工提取特征的难题,所以给cv带来了爆发性的进展。深度学习的思路就是让模型自动从数据中学习特征提取,从而生成了很多人工很难提取的特征:

4.  nlp的知识困境

不是说nlp在这波深度学习浪潮下没有进展,而是说突破并没有cv那么巨大。很多文本分类任务,你用一个巨复杂的双向LTSM的效果,不见得比好好做手工feature + svm好多少,而svm速度快、小巧、不需要大量数据、不需要gpu,很多场景真不见得深度学习的模型就比svm、gbdt等传统模型就好用。

而nlp更大的难题在于知识困境。不同于cv的感知智能,nlp是认知智能,认知就必然涉及到知识的问题,而知识却又是最离散最难于表示的。

自然语言处理(nlp)比计算机视觉(cv)发展缓慢,而且更难!的更多相关文章

  1. 自然语言处理(NLP)

    苹果语音助手Siri的工作流程: 听 懂 思考 组织语言 回答 这其中每一步骤涉及的流程为: 语音识别 自然语言处理 - 语义分析 逻辑分析 - 结合业务场景与上下文 自然语言处理 - 分析结果生成自 ...

  2. 自然语言处理(NLP) - 数学基础(1) - 总述

    正如我在<2019年总结>里说提到的, 我将开始一系列自然语言处理(NLP)的笔记. 很多人都说, AI并不难啊, 调现有库和云的API就可以啦. 然而实际上并不是这样的. 首先, AI这 ...

  3. 自然语言处理NLP学习笔记一:概念与模型初探

    前言 先来看一些demo,来一些直观的了解. 自然语言处理: 可以做中文分词,词性分析,文本摘要等,为后面的知识图谱做准备. http://xiaosi.trs.cn/demo/rs/demo 知识图 ...

  4. 贪心学院计算机视觉CV训练营

    贪心学院计算机视觉CV训练营 任务 Notes 其他 任务1:机器学习.深度学习简介 Note1 任务2:深度学习的发展历史 Note2 任务3:现代深度学习的典型例子 Note3 任务4:深度学习在 ...

  5. 自然语言处理NLP快速入门

    自然语言处理NLP快速入门 https://mp.weixin.qq.com/s/J-vndnycZgwVrSlDCefHZA [导读]自然语言处理已经成为人工智能领域一个重要的分支,它研究能实现人与 ...

  6. 国内知名的自然语言处理(NLP)团队

    工业界 腾讯人工智能实验室(Tencent AI Lab) 百度自然语言处理(Baidu NLP):对外提供了百度AI开放平台,王海峰(现任百度副总裁,AI技术平台体系AIG总负责人) 微软亚洲研究院 ...

  7. 自然语言处理(NLP) - 数学基础(1) - 排列组合

    正如我在<自然语言处理(NLP) - 数学基础(1) - 总述>一文中所提到的NLP所关联的概率论(Probability Theory)知识点是如此的多, 饭只能一口一口地吃了, 我们先 ...

  8. 国内外自然语言处理(NLP)研究组

     国内外自然语言处理(NLP)研究组 *博客地址 http://blog.csdn.net/wangxinginnlp/article/details/44890553 *排名不分先后.收集不全,欢迎 ...

  9. 曼孚科技:AI自然语言处理(NLP)领域常用的16个术语

    ​自然语言处理(NLP)是人工智能领域一个十分重要的研究方向.NLP研究的是实现人与计算机之间用自然语言进行有效沟通的各种理论与方法. 本文整理了NLP领域常用的16个术语,希望可以帮助大家更好地理解 ...

随机推荐

  1. Angularjs中的缓存以及缓存清理

    写在最前面:这篇博文是2篇文章组成,详细介绍了Angularjs中的缓存以及缓存清理,文章由上海尚学堂转载过来,欢迎大家阅读和评论.转载请注明出处,谢谢! 一个缓存就是一个组件,它可以透明地储存数据, ...

  2. Android单元测试之一:基本概念

    Android单元测试之一:基本概念 简单介绍 单元测试是应用程序测试策略中的基本测试,通过对代码进行单元测试,一方面可以轻松地验证单个单元的逻辑是否正确,另一方面在每次构建之后运行单元测试,可以快读 ...

  3. [Swift]LeetCode346. 从数据流中移动平均值 $ Moving Average from Data Stream

    Given a stream of integers and a window size, calculate the moving average of all integers in the sl ...

  4. 【异常】Servlet.service() for servlet [springMvc] in context with path [/orderdishessystem] threw exception [Handler processing failed; nested exception is java.lang.NoClassDefFoundError: net/sf/ezmorph/M

    今天做登录的时候,引入json-lib-2.1-jdk15.jar的包时,执行到JSONObject jsonObject = new JSONObject()对象就报标题的那个错. 原来是除了要导入 ...

  5. 机器学习 GBDT+xgboost 决策树提升

    目录 xgboost CART(Classify and Regression Tree) GBDT(Gradient Boosting Desicion Tree) GB思想(Gradient Bo ...

  6. zabbix系列之十——添加短信告警

    zabbix添加短信告警 1.查看zabbix-server脚本存放路径: [root@GYQ-Prod-Zabbix ~]# grep AlertScriptsPath /etc/zabbix/za ...

  7. AspNetCore 文件上传(模型绑定、Ajax) 两种方式 get到了吗?

    就目前来说,ASP.NET Core2.1了,已经相当成熟了,希望下个项目争取使用吧!! 上传文件的三种方式("我会的,说不定还有其他方式") 模型绑定 Ajax WebUploa ...

  8. Python爬虫入门教程 14-100 All IT eBooks多线程爬取

    All IT eBooks多线程爬取-写在前面 对一个爬虫爱好者来说,或多或少都有这么一点点的收集癖 ~ 发现好的图片,发现好的书籍,发现各种能存放在电脑上的东西,都喜欢把它批量的爬取下来. 然后放着 ...

  9. 软件性能测试技术树(三)----数据库(MySQL)性能

    全图: MySQL重点监控指标: MySQL主流分支: 数据库架构设计: MySQL慢查询: SQL语句分析与调优: MySQL索引: MySQL存储引擎: MySQL实时监控: MySQL集群监控工 ...

  10. 深入浅出ASP.NET Core系列(入门篇)

    入门篇 1.1.专题介绍 1.2.环境安装 1.3.创建项目 1.4部署到IIS 1.5准备CentOS和Nginx环境 1.6部署到CentOS 2.1命令行和JSON的配置 2.2Bind建立配置 ...