1 前言

主要贡献:

(1)第一个分析微调传统ImageNet预训练模型应用于目标检测器的固有缺点

(2)提出一个名为DetNet的新的骨干结构,它通过保持空间分辨率和扩大感受野的方式来专门设计用于目标检测任务

(3)基于低复杂度的DetNet59骨干结构,在MSCOCO目标检测和实例分割追踪数据集上实现了新的最先进的效果

3 DetNet

3.1 目的

传统骨干网络有三个缺点:

(1)网络阶段数不同

(2)大目标定位不准确

(3)小目标很难发现

3.2 DetNet设计

DetNet59细节设计如下:

(1)在FPN结构中应用的骨干网络中引入了额外的阶段,比如P6阶段。同时,即使在阶段4之后16x的空间分辨率依旧固定不变。

(2)空间尺度在阶段4之后是不变的,他们在阶段4后引入了新的阶段,每个阶段开始是一个带1x1卷积投射的扩张瓶颈(Fig.2 B),他们发现在Fig.2 B中的结构在类似FPN这种多阶段的检测器中有重要作用。

(3)他们把带扩张卷积的瓶颈结构作为基础网络模块,以此有效扩大感受野。又由于扩张卷积仍然很耗时,于是把阶段5和阶段6的通道数设置成和阶段4一样(256瓶颈模块输入通道)这和每到下一阶段就会扩大一倍通道数的传统骨干设计不一样。

 5 结论

在这篇论文中,他们专门为目标检测任务设计了一种新的骨干网络。传统的骨干网络一般是针对分类任务设计的,迁移到目标检测任务中会有一层隔阂。为了克服这个问题,他们提出了一种叫做“DetNet”的新骨干网络结构,不仅对分类任务有优化,也对定位很有帮助。如表7、8所示,DetNet在基于COCO标准库的目标检测和实例分割任务上均有优秀表现。

DetNet: A Backbone network for Object Detection 笔记的更多相关文章

  1. Parallel Feature Pyramid Network for Object Detection

    Parallel Feature Pyramid Network for Object Detection ECCV2018 总结: 文章借鉴了SPP的思想并通过MSCA(multi-scale co ...

  2. 论文阅读 | RefineDet:Single-Shot Refinement Neural Network for Object Detection

    论文链接:https://arxiv.org/abs/1711.06897 代码链接:https://github.com/sfzhang15/RefineDet 摘要 RefineDet是CVPR ...

  3. (转)Awesome Object Detection

    Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awes ...

  4. Paper Reading: Relation Networks for Object Detection

    Relation Networks for Object Detection笔记  写在前面:关于这篇论文的背景知识,请参考我前面的两篇随笔(<关于目标检测>和<关于注意力机制> ...

  5. object detection 总结

    1.基础 自己对于YOLOV1,2,3都比较熟悉. RCNN也比较熟悉.这个是自己目前掌握的基础2.第一步 看一下2019年的井喷的anchor free的网络3.第二步 看一下以往,引用多的网路4. ...

  6. 论文阅读笔记七:Structure Inference Network:Object Detection Using Scene-Level Context and Instance-Level Relationships(CVPR2018)

    结构推理网络:基于场景级与实例级目标检测 原文链接:https://arxiv.org/abs/1807.00119 代码链接:https://github.com/choasup/SIN Yong ...

  7. 论文阅读笔记五十三:Libra R-CNN: Towards Balanced Learning for Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构 ...

  8. 论文阅读笔记五十二:CornerNet-Lite: Efficient Keypoint Based Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基 ...

  9. 论文阅读笔记五十一:CenterNet: Keypoint Triplets for Object Detection(CVPR2019)

    论文链接:https://arxiv.org/abs/1904.08189 github:https://github.com/Duankaiwen/CenterNet 摘要 目标检测中,基于关键点的 ...

随机推荐

  1. Flask上下文管理源码--亲自解析一下

    前戏 偏函数 def index(a,b): return a+b # 原来的调用方法 # ret=index(1,2) # print(ret) # 偏函数--帮助开发者自动传递参数 import ...

  2. C#学习-多态

    由于可以继承基类的所有成员,子类就都有了相同的行为,但是有时子类的某些行为需要相互区别,子类需要覆写父类中的方法来实现子类特有的行为. 多态即相同类型的对象调用相同的方法却表现出不同行为的现象. 只有 ...

  3. 咸鱼入门到放弃3--tomcat

    Tomcat学习与使用 一. Tomcat安装及配置 二.项目部署(虚拟目录映射) Web应用开发好后,若想供外界访问,需要把web应用所在目录交给web服务器管理,这个过程称之为虚似目录的映射. 虚 ...

  4. python经典书籍必看:流畅的Python

    作者:熊猫烧香 链接:www.pythonheidong.com/blog/article/26/ 来源:python黑洞网 目标读者 本书的目标读者是那些正在使用 Python,又想熟悉 Pytho ...

  5. 【Linux】Linux简介

    思维导图 什么是Linux? Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户.多任务.支持多线程和多CPU的操作系统. Linux能运行主要的UNIX工 ...

  6. XOR UVALive - 8512 -区间线性基合并

    UVALive - 8512 题意 :给出一个包含n个元素的数组A以及一个k,接下来进行q次询问,每次询问给出 l 和 r , 要你求出从A[l] , A[l+1] , A[l + 2],...,A[ ...

  7. angular中service封装$http做权限时拦截403等状态及获取验证码倒计时、跨域问题解决

    封装$http.做权限时拦截403等状态及获取验证码倒计时: 拦截接口返回状态 var app = angular.module('app'); app.factory('UserIntercepto ...

  8. DWM1000 多个标签定位讨论 --[蓝点无限]

    多标签代码已经基本实现,完成代码可以在论坛上下载 http://bphero.com.cn/forum.php?mod=viewthread&tid=53&fromuid=2  蓝点D ...

  9. mongodb 遇到问题-查询单个需要包装id

    mongodb,get字符查询需要传入特定的包装id才能识别 const ObjectID = require('mongodb').ObjectID exports.queryOne = (req, ...

  10. LOJ #6303. 水题 (约数 质因数)

    #6303. 水题 内存限制 10 MiB 时间限制:1000 ms 标准输入输出 题目描述 给定正整数 n,kn, kn,k,已知非负整数 xxx 满足 n!modkx=0,求 xmaxx_{max ...