tensorflow Method源码阅读之 fully_connected
https://www.tensorflow.org/api_docs/python/tf/contrib/layers/fully_connected
fully_connected:
1、先根据权重得到输出
2、对输出normalizer (BN..)
3、对输出activate(relu, ...)
Defined in tensorflow/contrib/layers/python/layers/layers.py.
def fully_connected(inputs,
num_outputs,
activation_fn=nn.relu,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=init_ops.zeros_initializer(),
biases_regularizer=None,
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope=None):
"""Adds a fully connected layer. `fully_connected` creates a variable called `weights`, representing a fully
connected weight matrix, which is multiplied by the `inputs` to produce a
`Tensor` of hidden units. If a `normalizer_fn` is provided (such as
`batch_norm`), it is then applied. Otherwise, if `normalizer_fn` is
None and a `biases_initializer` is provided then a `biases` variable would be
created and added the hidden units. Finally, if `activation_fn` is not `None`,
it is applied to the hidden units as well. Note: that if `inputs` have a rank greater than 2, then `inputs` is flattened
prior to the initial matrix multiply by `weights`. Args:
inputs: A tensor of at least rank 2 and static value for the last dimension;
i.e. `[batch_size, depth]`, `[None, None, None, channels]`.
num_outputs: Integer or long, the number of output units in the layer.
activation_fn: Activation function. The default value is a ReLU function.
Explicitly set it to None to skip it and maintain a linear activation.
normalizer_fn: Normalization function to use instead of `biases`. If
`normalizer_fn` is provided then `biases_initializer` and
`biases_regularizer` are ignored and `biases` are not created nor added.
default set to None for no normalizer function
normalizer_params: Normalization function parameters.
weights_initializer: An initializer for the weights.
weights_regularizer: Optional regularizer for the weights.
biases_initializer: An initializer for the biases. If None skip biases.
biases_regularizer: Optional regularizer for the biases.
reuse: Whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.
variables_collections: Optional list of collections for all the variables or
a dictionary containing a different list of collections per variable.
outputs_collections: Collection to add the outputs.
trainable: If `True` also add variables to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
scope: Optional scope for variable_scope. Returns:
The tensor variable representing the result of the series of operations. Raises:
ValueError: If x has rank less than 2 or if its last dimension is not set.
"""
if not isinstance(num_outputs, six.integer_types):
raise ValueError('num_outputs should be int or long, got %s.' %
(num_outputs,)) layer_variable_getter = _build_variable_getter({
'bias': 'biases',
'kernel': 'weights'
}) with variable_scope.variable_scope(
scope,
'fully_connected', [inputs],
reuse=reuse,
custom_getter=layer_variable_getter) as sc:
inputs = ops.convert_to_tensor(inputs)
layer = core_layers.Dense(
units=num_outputs,
activation=None,
use_bias=not normalizer_fn and biases_initializer,
kernel_initializer=weights_initializer,
bias_initializer=biases_initializer,
kernel_regularizer=weights_regularizer,
bias_regularizer=biases_regularizer,
activity_regularizer=None,
trainable=trainable,
name=sc.name,
dtype=inputs.dtype.base_dtype,
_scope=sc,
_reuse=reuse)
outputs = layer.apply(inputs) # Add variables to collections.
_add_variable_to_collections(layer.kernel, variables_collections, 'weights')
if layer.bias is not None:
_add_variable_to_collections(layer.bias, variables_collections, 'biases') # Apply normalizer function / layer.
if normalizer_fn is not None:
if not normalizer_params:
normalizer_params = {}
outputs = normalizer_fn(outputs, **normalizer_params) if activation_fn is not None:
outputs = activation_fn(outputs) return utils.collect_named_outputs(outputs_collections, sc.name, outputs)
tensorflow Method源码阅读之 fully_connected的更多相关文章
- 【原】AFNetworking源码阅读(四)
[原]AFNetworking源码阅读(四) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇还遗留了很多问题,包括AFURLSessionManagerTaskDe ...
- 【原】AFNetworking源码阅读(二)
[原]AFNetworking源码阅读(二) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇中我们在iOS Example代码中提到了AFHTTPSessionMa ...
- 【原】SDWebImage源码阅读(一)
[原]SDWebImage源码阅读(一) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 一直没有系统地读过整套源码,就感觉像一直看零碎的知识点,没有系统读过一本专业经典书 ...
- 源码阅读系列:EventBus
title: 源码阅读系列:EventBus date: 2016-12-22 16:16:47 tags: 源码阅读 --- EventBus 是人们在日常开发中经常会用到的开源库,即使是不直接用的 ...
- EventBus源码解析 源码阅读记录
EventBus源码阅读记录 repo地址: greenrobot/EventBus EventBus的构造 双重加锁的单例. static volatile EventBus defaultInst ...
- angular源码阅读,依赖注入的原理:injector,provider,module之间的关系。
最开始使用angular的时候,总是觉得它的依赖注入方式非常神奇. 如果你跳槽的时候对新公司说,我曾经使用过angular,那他们肯定会问你angular的依赖注入原理是什么? 这篇博客其实是angu ...
- CI框架源码阅读笔记4 引导文件CodeIgniter.php
到了这里,终于进入CI框架的核心了.既然是“引导”文件,那么就是对用户的请求.参数等做相应的导向,让用户请求和数据流按照正确的线路各就各位.例如,用户的请求url: http://you.host.c ...
- CI框架源码阅读笔记3 全局函数Common.php
从本篇开始,将深入CI框架的内部,一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说,全局函数具有最高的加载优先权,因此大多数的框架中BootStrap ...
- parseInt的源码阅读
parseInt的源码阅读 Integer.parseInt()这个方法的功能小巧又实用,实现起来困难不大,没有很复杂.这里就来看一下Java的源码是怎么写的吧,走一边大婶写过的代码,应该会有点收获吧 ...
随机推荐
- c/c++ 多线程 unique_lock的使用
多线程 unique_lock的使用 unique_lock的特点: 1,灵活.可以在创建unique_lock的实例时,不锁,然后手动调用lock_a.lock()函数,或者std::lock(lo ...
- c/c++ linux 进程间通信系列7,使用pthread mutex
linux 进程间通信系列7,使用pthread mutex #include <stdio.h> #include <stdlib.h> #include <unist ...
- c/c++ 网络编程 bind函数
网络编程 bind函数 bind的作用是确定端口号. 正常处理都是先bind,然后listen 如果不bind,直接listen,会是什么结果? 内核会自动随机分配一个端口号 例子: #include ...
- python3 文件操作
步骤:打开文件->操作文件->关闭文件 打开文件 文件句柄 = open('文件路径', '模式') 指定文件编码 文件句柄= open('文件路径','模式',encoding='utf ...
- MFC打印
映射模式是MFC甚至SDK界面编程第1个难点.打印则是第2个难点.这2个都是历史遗留的设计缺陷.这些缺陷还不至于到bug程度,但却很难用,不易理解. MFC提供2个类来实现打印(预览),具体有CPri ...
- 网络威胁实时地图(CyberThread Real-time Map)
今天跟大家分享一下网络威胁实时地图(CyberThread Real-time Map),从地图上可以看出目前网络威胁情况数据. 点击打开网络威胁实时地图 可以点击demo on/off来看演示.可以 ...
- ubuntu系统下mysql重置密码和修改密码操作
一.忘记密码后想重置密码 在介绍修改密码之前,先介绍一个文件/etc/mysql/debian.cnf.其主要内容如下图: 里面有一个debian-sys-maint用户,这个用户只有Debian或U ...
- MongoDB Change Stream:简介、尝试与应用
在MongoDB3.6引入的新feature中,change stream无疑是非常吸引人的. Change streams allow applications to access real-tim ...
- linux查询日志常用命令,经常更新
1.grep命令 grep -c "查询内容" filename ------c,是小写,可以知道你要查询的内容在这个文件中是否存在 grep -C 10 "查询内 ...
- JSOI2019 Round2 极限生还
江苏省省队一共13个名额,去掉女生名额, 按1/3校内限制,我们南外只有4个名额, 在noip爆炸(占比35%),省选一轮爆炸(占比40%),(此时蒟蒻在校内排不进前10...) 总算在省选二轮(占比 ...