记笔记目的:刻意地、有意地整理其思路,综合对比,以求借鉴。他山之石,可以攻玉。

《Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation》-20180724,一篇来自德国波恩大学与锡根大学的paper。

论文code

https://github.com/briqr/CSPN

Abstract

The method introduces a novel layer which applies simplex projection on the output of a neural network using area constraints of class objects.
该方法提出了一种新颖的层,该层使用类目标对象的区域约束将单一投影应用于神经网络的输出。

该方法可以自然无缝地与任意CNN架构融合在一起,同时,作者所提出的投影层允许强监督模型通过替换ground truth标签而毫不费力地适应弱监督模型。

1 Introduction

The task of semantic image segmentation, which requires solving the problem of assigning a semantic class label to each pixel in a given image。这句话极好,可以借鉴!

本文提出的方法更加实用。它将约束直接融入网络层,形成新的网络层,该新网络层可以方便地加入进任何卷积神经网络里面去。

2 Related work
read history。

3 Convolutional Simplex Projection Network (CSPN)

还是英语顺眼啊。挑拣关键字眼梳理一下这一小节:

3.1 Simplex Projection Layer

3.2 CSPN for Weakly Supervised Semantic Segmentation

Figure 1 gives an overview of how the simplex projection layer can be applied in a weakly
supervised setting, in which only image-level labels are available. In order to enforce some
given constraints at the last layer, we introduce a softmax layer after the last fully convolu-
tional layer in the network, which performs:

3.3 Simplex Projection Layer in SEC

2018年发表论文阅读:Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation的更多相关文章

  1. 论文阅读 | A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes

    paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘 ...

  2. [论文阅读笔记] Structural Deep Network Embedding

    [论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...

  3. [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion

    [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...

  4. [论文][半监督语义分割]Adversarial Learning for Semi-Supervised Semantic Segmentation

    Adversarial Learning for Semi-Supervised Semantic Segmentation 论文原文 摘要 创新点:我们提出了一种使用对抗网络进行半监督语义分割的方法 ...

  5. 论文阅读笔记十八:ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation(CVPR2016)

    论文源址:https://arxiv.org/abs/1606.02147 tensorflow github: https://github.com/kwotsin/TensorFlow-ENet ...

  6. 论文阅读:An End-to-End Network for Generating Social Relationship Graphs

    论文链接:https://arxiv.org/abs/1903.09784v1 Abstract 社交关系智能代理在人工智能领域中越来越引人关注.为此,我们需要一个可以在不同社会关系上下文中理解社交关 ...

  7. 论文阅读笔记十一:Rethinking Atrous Convolution for Semantic Image Segmentation(DeepLabv3)(CVPR2017)

    论文链接:https://blog.csdn.net/qq_34889607/article/details/8053642 摘要 该文重新窥探空洞卷积的神秘,在语义分割领域,空洞卷积是调整卷积核感受 ...

  8. 【论文阅读】DCAN: Deep Contour-Aware Networks for Accurate Gland Segmentation

    DCAN: Deep Contour-Aware Networks for Accurate Gland Segmentation 作者:Hao Chen Xiaojuan Qi Lequan Yu ...

  9. 【论文阅读】Second-order Attention Network for Single Image Super-Resolution

    概要 近年来,深度卷积神经网络(CNNs)在单一图像超分辨率(SISR)中进行了广泛的探索,并获得了卓越的性能.但是,大多数现有的基于CNN的SISR方法主要聚焦于更宽或更深的体系结构设计上,而忽略了 ...

随机推荐

  1. mysql常用权限命令、乱码及其他问题记录

    用户管理 use mysql; 查看   select host,user,password from user ; 创建 create user  xuhong IDENTIFIED by 'xuh ...

  2. 软工+C(2): 分数和checklist

    // 上一篇:题目设计.点评和评分 // 下一篇:超链接 教学里,建立清晰明确的评分规则并且一开始就公布,对于教师.助教.学生都是重要的. 公布时机 在课程开始的时候,就需要确定并公布评分机制,随着课 ...

  3. jmeter学习记录--07--jmeter元件

    通过jmeter元件可以模拟负载.参数化.设置关联.设置检查点.设置集合点.控制场景运行.监控测试结果等. 1.逻辑控制器:比如foreach控制器,查询到了订单并要对每个订单进行出库操作,以订单号作 ...

  4. 前置通知也能对参数进行加工 通过joiPoint这个方法

  5. webpack学习记录-认识loader(二)

    Loader 就像是一个翻译员,能把源文件经过转化后输出新的结果,并且一个文件还可以链式的经过多个翻译员翻译. loader参考文章:https://webpack.docschina.org/loa ...

  6. CentOS6.5安装ElasticSearch6.2.3

    CentOS6.5安装ElasticSearch6.2.3 1.Elastic 需要 Java 8 环境.(安装步骤:http://www.cnblogs.com/hunttown/p/5450463 ...

  7. OpenLayers学习笔记(九)— 限制地图显示范围

    openlayers 3 地图上限制地图显示及拖动范围,坐标系是4326转3857,中心经纬度精确到小数点后六位,减少误差 GitHub:八至 作者:狐狸家的鱼 本文链接:ol3-限制地图显示及拖动范 ...

  8. pillow的用法

    这是原图 from PIL import Image im=Image.open('C:/Users/history/Desktop/微信图片_20190408110611.jpg') r,g,b=i ...

  9. (二分查找 结构体) leetcode33. Search in Rotated Sorted Array

    Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...

  10. dom4j,json,pattern性能对比【原】

    报文大概2000字节,对比时为只取其中某个节点的值即可. 以下对比可知取少量节点时pattern性能是远大于dom4j,和json的, 但取大量的时候就不能这么以偏概全了. dom4j和pattern ...