题目链接:洛谷


这个公式可真是个好东西。(哪位大佬知道它叫什么名字的?)

如果$X$恒$\geq 0$,那么

$$E[X]=\int_0^{+\infty}P(X>t)dt$$

呸,我什么都没写。

如果$X\in N$,那么

$$E[X]=\sum_{i=0}^{+\infty}P(X>i)$$


根据上面的公式,我们首先看看如何计算$P(X>i)$

这个表示前$i$个数的$gcd$不为1,我们反面考虑,$gcd$为1的概率可以通过莫比乌斯反演求出,所以

$$P(X>i)=1-\sum_{d=1}^m\mu(d)(\frac{\lfloor\frac{m}{d}\rfloor}{m})^i$$

$$=-\sum_{d=2}^m\mu(d)(\frac{\lfloor\frac{m}{d}\rfloor}{m})^i$$

带入上面的公式。

$$E[X]=\sum_{i=1}^{+\infty}P(x>i)+1$$

$$=1-\sum_{i=1}^{+\infty}\sum_{d=2}^m\mu(d)(\frac{\lfloor\frac{m}{d}\rfloor}{m})^i$$

$$=1-\sum_{d=2}^{m}\mu(d)\sum_{i=1}^{+\infty}(\frac{\lfloor\frac{m}{d}\rfloor}{m})^i$$

$$=1-\sum_{d=2}^m\mu(d)\frac{\lfloor\frac{m}{d}\rfloor}{m-\lfloor\frac{m}{d}\rfloor}$$

预处理$\mu$和$inv$之后,时间复杂度$O(m)$

 #include<cstdio>
#define Rint register int
using namespace std;
typedef long long LL;
const int N = , mod = 1e9 + ;
inline int add(int a, int b){int res = a + b; if(res >= mod) res -= mod; return res;}
inline int dec(int a, int b){int res = a - b; if(res < ) res += mod; return res;}
int n, mu[N], pri[N], tot, inv[N], ans, tmp;
bool notp[N];
int main(){
scanf("%d", &n);
inv[] = ;
for(Rint i = ;i <= n;i ++) inv[i] = (LL) (mod - mod / i) * inv[mod % i] % mod;
notp[] = notp[] = true;
mu[] = ;
for(Rint i = ;i <= n;i ++){
if(!notp[i]){mu[i] = mod - ; pri[++ tot] = i;}
for(Rint j = ;j <= tot && i * pri[j] <= n;j ++){
notp[i * pri[j]] = true;
if(i % pri[j]) mu[i * pri[j]] = mod - mu[i];
else break;
}
}
for(Rint i = ;i <= n;i ++){
tmp = n / i;
ans = add(ans, (LL) mu[i] * tmp % mod * inv[n - tmp] % mod);
}
printf("%d", dec(, ans));
}

CF1139D

CF1139D Steps to One的更多相关文章

  1. 题解-CF1139D Steps to One

    题面 CF1139D Steps to One 一个数列,每次随机选一个 \([1,m]\) 之间的数加在数列末尾,数列中所有数的 \(\gcd=1\) 时停止,求期望长度 \(\bmod 10^9+ ...

  2. cf1139D. Steps to One(dp)

    题意 题目链接 从\([1, M]\)中随机选数,问使得所有数gcd=1的期望步数 Sol 一个很显然的思路是设\(f[i]\)表示当前数为\(i\),期望的操作轮数,转移的时候直接枚举gcd \(f ...

  3. CF1139D Steps to One(DP,莫比乌斯反演,质因数分解)

    stm这是div2的D题……我要对不住我这个紫名了…… 题目链接:CF原网  洛谷 题目大意:有个一开始为空的序列.每次操作会往序列最后加一个 $1$ 到 $m$ 的随机整数.当整个序列的 $\gcd ...

  4. CF1139D Steps to One (莫比乌斯反演 期望dp)

    \[ f[1] = 0 \] \[ f[i] = 1 + \frac{1}{m} \sum_{j = 1} ^ n f[gcd(i, j)] \ \ \ \ \ \ (i != 1) \] 然后发现后 ...

  5. CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】

    反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...

  6. 【期望dp 质因数分解】cf1139D. Steps to One

    有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...

  7. 【CF1139D】Steps to One(动态规划)

    [CF1139D]Steps to One(动态规划) 题面 CF 你有一个数组,每次随机加入一个\([1,n]\)的数,当所有数\(gcd\)为\(1\)时停止,求数组长度的期望. 题解 设\(f[ ...

  8. animation-timing-function: steps() 详解

    在应用 CSS3 渐变/动画时,有个控制时间的属性 <animation-timing-function> .它的取值中除了常用到的 贝萨尔曲线以外,还有个让人比较困惑的 steps()  ...

  9. CSS3 Animation 帧动画 steps()

    @keyframes fn{ 0%{} 100%{} } CSS3的Animation有八个属性 animation-name :动画名 fn animation-duration:时间 1s ani ...

随机推荐

  1. Google Android SDK开发范例大全笔记 二

    网络设备管理相关相关 代码地址 1 WifiManager LocationManager分别控制 wifi及GPS WifiManager 判断网络状态 ,LocationManager判断定位状态 ...

  2. 前端技术之--CSS

    在标签上设置style属性: background-color: #2459a2; height: 48px; ... 编写css样式: 1. 标签的style属性 2. 写在head里面 style ...

  3. 把.Net开发环境迁移到Linux上去

    .Net Core发布之前,多年来,.Net程序员的开发环境都在Windows上. 三街第一帅的我,虽然上班的8小时一直在windows上撸C#,但是下班时间一般都在搞其他的乱七八糟的东西,比如写写小 ...

  4. Handler Looper 解析

    文章讲述Looper/MessageQueue/Handler/HandlerThread相关的技能和使用方法. 什么是Looper?Looper有什么作用? Looper是用于给线程(Thread) ...

  5. Jmeter学习系列----1 环境搭建

    注:在安装Jmeter之前,请先检查下电脑有没有装JDK:开始->运行->然后输入cmd->进入命令行界面,输入java -version , 出现以下信息就是此电脑已安装了JDK. ...

  6. springboot 使用 swagger2

    段时间,同事分享了一下 swagger-ui,于是自己尝试了一下.大致的使用过程这里记录一下: 1.添加依赖 <!--swagger-ui--><dependency> < ...

  7. IE下CSS3伪类的支持

    当css3.0出现以后,着实让我兴奋了好久,因为出现了很多选择器,我们在也不用靠js做复杂判断了.比如:nth-child,很容易就可以判断奇偶对象 “:nth-child(2n)和:nth-chil ...

  8. 51nod 1617 奇偶数组

    传送门 回来看一眼51nod,发现自己掉到rank4了,赶紧切道题回rank3. 一眼不会做,这种东西应该慢慢找规律吧……然后看到数据范围其实比较小,应该是单次log的,那是不是可以分治啊. #inc ...

  9. CSS3_天猫商品墙

    天猫商品墙 网格状布局: 1.  ul li 布局 2.  float: left; 使得元素在一行.注意: 父元素解决高度塌陷 3.  ul 设置固定宽,使得元素挤下去 4.  给父元素加一个 pa ...

  10. (55)Wangdao.com第八天_JavaScript 字符串中使用 \u 输出Unicode字符

    JavaScript中,使用Unicode 需要 \u 进行转义,格式 "\u十六进制" console.log(\u0031); console.log(\u0041); // ...