题目

一个人写了n封不同的信及相应的n个不同的信封,他把这n封信都装错了信封,问都装错信封的装法有多少种?

解体思路

用A、B、C……表示写着n位友人名字的信封,a、b、c……表示n份相应的写好的信纸。把错装的总数为记作f(n)。假设把a错装进B里了(意味着b不能装入B了),包含着这个错误的一切错装法分两类:

(1)b装入A里,这时每种错装的其余部分都与A、B、a、b 无关,应有f(n-2)种错装法。

(2)b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的) 的信纸b、c……装入(除B外的)n-1个信封A、C……,显然这时装错的方法有f(n-1)种。

总之在a装入B的错误之下,共有错装法f(n-2)+f(n-1)种。a装入C,装入D……的n-2种错误之下,同样都有f(n-2)+f(n-1)种错装法,因此:

f(n)=(n-1)(f(n-1)+f(n-2))

程序代码

hdu1465

#include "stdio.h"

__int64 f(int n);
int main()
{
int n;
__int64 a;
while(scanf("%d",&n)!=EOF)
{
a = f(n);
printf("%I64d\n", a);
}
return 0;
}
__int64 f(int n)
{
if (n == 1) return 0;
if (n == 2) return 1;
if (n > 2) return (n-1)*(f(n-1)+f(n-2));
}

#include "stdio.h"

long long int f(int n);
int main()
{
int n;
long long int a;
while(scanf("%d",&n)!=EOF)
{
a = f(n);
printf("%lld\n", a);
}
return 0;
}
long long int f(int n)
{
if (n == 1) return 0;
if (n == 2) return 1;
if (n > 2) return (n-1)*(f(n-1)+f(n-2));
}

另外两种解法

#include <stdio.h>
int main()
{
int n,i,a[50];
scanf("%d",&n);
for(i=1;i<=n;i++)
{
if(i==1)
a[i]=0;
if(i==2)
a[i]=1;
else
a[i]=(i-1)*(a[i-1]+a[i-2]);
}
printf("%d\n",a[n]);
return 0;
}

#include <stdio.h>
int main()
{
int n,i,a[50];
a[1]=0;
a[2]=1;
for(i=3;i<50;i++)
a[i]=(i-1)*(a[i-1]+a[i-2]); scanf("%d",&n);
printf("%d\n",a[n]);
return 0;
}

hdu1465 动态规划的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. SHELL脚本的常规命令

    **shell脚本的执行方式: 方法一:首先赋予x权限,再输入相对路径或绝对路径,./testdot.sh或/root/shell/testdot.sh 方法二:sh testdot.sh(会新开一个 ...

  2. C语言分步编译

    在进行C语言源码至可执行程序的整个过程中,整个形成过程可以分为四步: 1.预处理 gcc -E hello.c -o hello.i 目的: (1)宏定义展开 (2)头文件展开 (3)条件编译 (4) ...

  3. 理解 Objective-c "属性"

    理解 Objective-c "属性" @property 是OC中能够快速定义一个属性的关键字,如下我们定义一个属性. @property NSString *String; 这 ...

  4. firewall-cmd 防火墙命令详解 及 TCP Wrappers

    firewall-cmd 常用参数及作用 参数 作用 --get-default-zone 查询默认的区域名称 --set-default-zone=<区域名称> 设置默认的区域,使其永久 ...

  5. java并发面试题-基础

    多线程 java中有几种方法可以实现一个线程? 1.直接继承thread类:2.实现runnable接口: 如何停止一个正在运行的线程?可以使用正在运行的线程,支持线程中断,通常是定义一个volati ...

  6. vue-router2.0组件复用

    在使用vue-router1.x时我们知道对于路由 a/b/c  和  a/b/d ,  组件a和组件b将会复用 .具体可以参考:https://github.com/vuejs/vue-router ...

  7. IOS开发---菜鸟学习之路--(十八)-利用代理实现向上一级页面传递数据

    其实我一开始是想实现微信的修改个人信息那样的效果 就是点击昵称,然后跳转到另外一个页面输入信息 但是细想发现微信的话应该是修改完一个信息后就保存了 而我做的项目可能需要输入多个数据之后再点击提交的. ...

  8. 11、JQuery知识点总结

    1.JQuery简介 JQuery 是一套跨浏览器的JavaScript库,简化HTML与JavaScript之间的操作 jQuery有下列特色: 跨浏览器的DOM元素选择 DOM巡访与更改:支持CS ...

  9. Python基础-week02 Python的常用数据类型

    一.模块初识 import导入Py自带模块例如os,sys等及其自己编写的Py文件,导入到其他文件中,默认查找当前目录.如果不在同一目录,会报错,将该自定义py文件模块放到site-packages目 ...

  10. Linux 必要软件的安装与配置

    主要是记录一下,免得下次重装系统后又到处搜索.. 一.必要软件的安装 JDK 下载 tar.gz:http://www.oracle.com/technetwork/java/javase/downl ...