hdu1465 动态规划
题目
一个人写了n封不同的信及相应的n个不同的信封,他把这n封信都装错了信封,问都装错信封的装法有多少种?
解体思路
用A、B、C……表示写着n位友人名字的信封,a、b、c……表示n份相应的写好的信纸。把错装的总数为记作f(n)。假设把a错装进B里了(意味着b不能装入B了),包含着这个错误的一切错装法分两类:
(1)b装入A里,这时每种错装的其余部分都与A、B、a、b 无关,应有f(n-2)种错装法。
(2)b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的) 的信纸b、c……装入(除B外的)n-1个信封A、C……,显然这时装错的方法有f(n-1)种。
总之在a装入B的错误之下,共有错装法f(n-2)+f(n-1)种。a装入C,装入D……的n-2种错误之下,同样都有f(n-2)+f(n-1)种错装法,因此:
f(n)=(n-1)(f(n-1)+f(n-2))
程序代码
hdu1465
#include "stdio.h"
__int64 f(int n);
int main()
{
int n;
__int64 a;
while(scanf("%d",&n)!=EOF)
{
a = f(n);
printf("%I64d\n", a);
}
return 0;
}
__int64 f(int n)
{
if (n == 1) return 0;
if (n == 2) return 1;
if (n > 2) return (n-1)*(f(n-1)+f(n-2));
}
#include "stdio.h"
long long int f(int n);
int main()
{
int n;
long long int a;
while(scanf("%d",&n)!=EOF)
{
a = f(n);
printf("%lld\n", a);
}
return 0;
}
long long int f(int n)
{
if (n == 1) return 0;
if (n == 2) return 1;
if (n > 2) return (n-1)*(f(n-1)+f(n-2));
}
另外两种解法
#include <stdio.h>
int main()
{
int n,i,a[50];
scanf("%d",&n);
for(i=1;i<=n;i++)
{
if(i==1)
a[i]=0;
if(i==2)
a[i]=1;
else
a[i]=(i-1)*(a[i-1]+a[i-2]);
}
printf("%d\n",a[n]);
return 0;
}
#include <stdio.h>
int main()
{
int n,i,a[50];
a[1]=0;
a[2]=1;
for(i=3;i<50;i++)
a[i]=(i-1)*(a[i-1]+a[i-2]);
scanf("%d",&n);
printf("%d\n",a[n]);
return 0;
}
hdu1465 动态规划的更多相关文章
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- C#动态规划查找两个字符串最大子串
//动态规划查找两个字符串最大子串 public static string lcs(string word1, string word2) { ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...
- POJ 1163 The Triangle(简单动态规划)
http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS Memory Limit: 10000K Total Submissi ...
随机推荐
- 数据结构-队列(Queue)
#include <stdio.h> #include <stdlib.h> #define LIST_INIT_SIZE 10 #define LISTINCREMENT 1 ...
- Java面向对象---方法的创建与重载
方法的创建 方法就是可重复调用的代码段. 定义: 访问修饰符 返回值类型 方法名(参数){ 方法主体 } 返回值类型:void(无返回值):基本数据类型:应用数据类型:类对象等. 方法名的命名规则:第 ...
- HDU 4825 Xor Sum (trie树处理异或)
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others)Total S ...
- Android stadio litepal
今天看到技术交流群里有人招聘Android,要求会litepal. 我立马百度了下.嗯,我的学习技术的精神,是值得称赞的. litepal就是操作数据库的一个框架.git地址: https://git ...
- copy & deepcopy
1 import copy 2 3 字典参照列表结论,看是否有深层嵌套. 4 a = {'name':1,'age':2} 5 b = a 6 a['name'] = 'ff' 7 print(a) ...
- sqlserver2008链接服务器中执行存储过程配置过程
参考:http://www.cnblogs.com/ycsfwhh/archive/2010/12/15/1906507.html 1.双方启动MSDTC服务MSDTC(分布式交易协调器),协调跨多个 ...
- java 四舍五入 保留两位小数
1. 格式化字符串 java.text.DecimalFormat df = new java.text.DecimalFormat("#0.00"); float val=Flo ...
- win8中写好的程序,在win7中没办法运行
没有安装相应版本的,net framework win8自带4.0 win7自带2.0 所以4.0及其以上的程序在win7跑必须安装4.0及其以上版本的framework
- 【转】Twitter-Snowflake,64位自增ID算法详解
Twitter-Snowflake算法产生的背景相当简单,为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并且在分布式系统 ...
- 【SPOJ1297】Palindrome (SA+RMQ)
求最长回文串.把原串翻转后,加在原串后面,中间插入一个辨别字符.然后求SA,Height.然后枚举每个字母作为回文串中心,分长度为奇数和偶数去讨论:奇数求 suffix(i)和suffix(n-i+1 ...