题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093

每个点都是等价的,从点的贡献来看,得到式子:

\( ans = n * \sum\limits_{d=0}^{n-1} d^{k} * 2^{C_{n-1}^{2}} * C_{n-1}^{d} \)

使用 \( n^{k} = \sum\limits_{i=0}^{k} S(k,i) * i! *C_{n}^{i} \)

得到 \( ans = n * \sum\limits_{d=0}^{n-1} 2^{C_{n-1}^{2}} * C_{n-1}^{d} * \sum\limits_{j=0}^{k} S(k,j) * j! * C_{d}^{j} \)

此时不要把组合数拆成阶乘!虽然拆成阶乘可以消去 \( d! \),但如果不消去,放在一起可以得到新的组合意义;

\( ans = n * 2^{C_{n-1}^{2}} * \sum\limits_{j=0}^{k} S(k,j) * j! * \sum\limits_{d=0}^{n-1} C_{n-1}^{d} * C_{d}^{j} \)

而 \( \sum\limits_{d=0}^{n-1} C_{n-1}^{d} * C_{d}^{j} \) 表示从 \( n-1 \) 个人里选 \( d \) 个人,再从 \( d \) 个人里选 \( j \) 个人;

其实就是从 \( n-1 \) 个人里选 \( j \) 个人,剩下的人随便选,即 \( C_{n-1}^{j} * 2^{n-1-j} \)

所以 \( ans = n * 2^{C_{n-1}^{2}} * \sum\limits_{j=0}^{k} S(k,j) * j! * C_{n-1}^{j} * 2^{n-1-j} \)

而通过 \( S(n,m) = \frac{1}{m!} \sum\limits_{k=0}^{m} C_{m}^{k} * (m-k)^{n} * (-1)^{k} \) (枚举 \( k \) 个空组,最后除去 \( m \) 组的排列)

即 \( S(n,m) = \sum\limits_{k=0}^{m} \frac{(m-k)^{n}}{(m-k)!} * \frac{(-1)^{k}}{k!} \)

可以用NTT求出一行的第二类斯特林数,也就是求出 \( S(k,i) \)

然后把 \( C_{n-1}^{j} \) 拆开约分,上下都只有 \( k \) 级别,预处理即可;

还是要注意次数是对 \( mod-1 \) 取模。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=2e5+,xm=(<<),mod=;
int n,m,lim,a[xm],b[xm],rev[xm],jc[xn],jcn[xn],jd[xn];
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
ll pw(ll a,ll b)
{
ll ret=; a=a%mod; b=b%(mod-);
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
void init()
{
jc[]=;
for(int i=;i<=m;i++)jc[i]=(ll)jc[i-]*i%mod;
jcn[m]=pw(jc[m],mod-);
for(int i=m-;i>=;i--)jcn[i]=(ll)jcn[i+]*(i+)%mod;
jd[]=;
for(int j=;j<=m;j++)jd[j]=(ll)jd[j-]*(n-j)%mod;
}
void ntt(int *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
int len=(mid<<),wn=pw(,tp==?(mod-)/len:(mod-)-(mod-)/len);
for(int j=;j<lim;j+=len)
for(int k=,w=;k<mid;k++,w=(ll)w*wn%mod)
{
int x=a[j+k],y=(ll)w*a[j+mid+k]%mod;
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
}
}
if(tp==)return; int inv=pw(lim,mod-);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*inv%mod;
}
int main()
{
scanf("%d%d",&n,&m); init();
lim=; int l=;
while(lim<=m+m)lim<<=,l++;
for(int i=;i<lim;i++)rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
for(int i=;i<=m;i++)a[i]=(ll)pw(i,m)*jcn[i]%mod;
for(int i=;i<=m;i++)b[i]=upt((i&?-:)*jcn[i]);
ntt(a,); ntt(b,);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*b[i]%mod;
ntt(a,-);
int ans=;
for(int j=;j<=m;j++)
ans=(ans+(ll)a[j]*jc[j]%mod*jd[j]%mod*jcn[j]%mod*pw(,n--j))%mod;
printf("%lld\n",(ll)n*pw(,((ll)(n-)*(n-)/))%mod*ans%mod);
return ;
}

bzoj 5093 图的价值 —— 第二类斯特林数+NTT的更多相关文章

  1. BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT

    定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...

  2. bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...

  3. BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)

    题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...

  4. bzoj 5093 [Lydsy1711月赛]图的价值——第二类斯特林数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 不要见到组合数就拆! 枚举每个点的度数,则答案为 \( n*\sum\limits_{ ...

  5. 【XSY1301】原题的价值 第二类斯特林数 NTT

    题目描述 给你\(n,m\),求所有\(n\)个点的简单无向图中每个点度数的\(m\)次方的和. \(n\leq {10}^9,m\leq {10}^5\) 题解 \(g_n\)为\(n\)个点的无向 ...

  6. BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】

    题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...

  7. bzoj5093:图的价值(第二类斯特林数+NTT)

    传送门 首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 即对于每个点\(i\),枚举它的度数,然后计算方案.因为有\(n\) ...

  8. BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】

    题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...

  9. 【BZOJ4555】【TJOI2016】【HEOI2016】求和 (第二类斯特林数+NTT卷积)

    Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: $$f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\tim ...

随机推荐

  1. java代码评审内容

    评审内容 u 工具检查 □  Eclipse警告 □  FindBug □  CheckStyle □  Jupiter □  Subclipse 或者Subversive u 代码注释内容(详细参考 ...

  2. oracle中v$sga_target_advice的用途

    v$sga_target_advice:该视图可用于建议SGA大小设置是否合理.   SELECT a.sga_size,--sga期望大小          a.sga_size_factor,-- ...

  3. rtems 4.11 IRQ (arm,beagle)

    arm IRQ入口在 cpukit/score/arm/arm_exec_interrupt.S 中,其中BSP最关心就是 bl bsp_interrupt_dispatch 这句,看看beagle ...

  4. request 获取请求头

    /********************************************************servlet页面********************************** ...

  5. PHP中__get()和__set()的用法实例详解

    php面向对象_get(),_set()的用法 一般来说,总是把类的属性定义为private,这更符合现实的逻辑.但是,对属性的读取和赋值操作是非常频繁的,因此在PHP5中,预定义了两个函数“__ge ...

  6. iOS自己定义对象保存到本地文件

    我是将聊天记录存到本地,里边用到了自己定义的对象.把数据转成Data格式存到本地.在转Data格式的时候报错了.这时候须要先将自己定义对象进行归档才干够转Data格式. 方法例如以下: 一.在.h文件 ...

  7. 11 linux nginx上安装ecshop 案例

    一: nginx上安装ecshop 案例 (1)解压到 nginx/html下 浏览器访问:127.0.0.1/ecshop/index.php 出现错误:not funod file 原因:ngin ...

  8. WPF实现ScrollViewer滚动到指定控件处

    在前端 UI 开发中,有时,我们会遇到这样的需求:在一个 ScrollViewer 中有很多内容,而我们需要实现在执行某个操作后能够定位到其中指定的控件处:这很像在 HTML 页面中点击一个链接后定位 ...

  9. power law 幂定律

    y=cx∧a 卖品销量排名与销量

  10. HTML 学习笔记 JQuery(animation)

    动画效果也是JQuery库吸引人的地方,通过JQuery的动画方法,能够轻松的为网页天假非常紧菜的视觉效果. show()方法和hide()方法 show()方法和hide()方法是JQuery中最基 ...