[POJ2417]Discrete Logging(指数级同余方程)
Discrete Logging
B
L
== N (mod P)
Input
Output
Sample Input
5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111
Sample Output
0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587
HinThe solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
B
(P-1)
== 1 (mod P)
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B-m== B(P-1-m)
(mod P) .
题解:这道题目是Baby-step giant-step的裸题吧,嗯嗯,不要忘了开long long就可以了。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<cstring>
#include<map>
#define ll long long
using namespace std; ll p,b,n; int ex_gcd(ll a,ll b,ll &x,ll &y)
{
if (!b){x=,y=;return a;}
else
{
int fzy=ex_gcd(b,a%b,x,y);
int t=x;x=y;
y=t-a/b*y;
return fzy;
}
}
void solve()
{
ll m=(ll)sqrt(p);
map<int,int>num;
map<int,bool>app;
app[]=,num[]=;
ll zhi=;
for (int i=;i<=m-;i++)
{
zhi=zhi*b%p;
if (!app[zhi])
{
app[zhi]=;
num[zhi]=i;
}
}
zhi=zhi*b%p;
ll x,y,nn=n;
int fzy=ex_gcd(zhi,p,x,y);
x=(x+p)%p;
for (int i=;i<=m;i++)
{
if (app[nn])
{
printf("%lld\n",i*m+num[nn]);
return;
}
else nn=nn*x%p;
}
printf("no solution\n");
}
int main()
{
while(~scanf("%d%d%d",&p,&b,&n))
solve();
}
[POJ2417]Discrete Logging(指数级同余方程)的更多相关文章
- POJ2417 Discrete Logging【BSGS】
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5577 Accepted: 2494 ...
- POJ2417 Discrete Logging
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- POJ2417 Discrete Logging【BSGS】(模板题)
<题目链接> 题目大意: P是素数,然后分别给你P,B,N三个数,然你求出满足这个式子的L的最小值 : BL== N (mod P). 解题分析: 这题是bsgs算法的模板题. #incl ...
- poj2417 Discrete Logging BSGS裸题
给a^x == b (mod c)求满足的最小正整数x, 用BSGS求,令m=ceil(sqrt(m)),x=im-j,那么a^(im)=ba^j%p;, 我们先枚举j求出所有的ba^j%p,1< ...
- POJ2417 Discrete Logging | A,C互质的bsgs算法
题目: 给出A,B,C 求最小的x使得Ax=B (mod C) 题解: bsgs算法的模板题 bsgs 全称:Baby-step giant-step 把这种问题的规模降低到了sqrt(n)级别 首 ...
- Discrete Logging(poj2417)
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5120 Accepted: 2319 ...
- POJ 2417 Discrete Logging (Baby-Step Giant-Step)
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 2819 Accepted: 1386 ...
- [poj2417]Discrete Logging_BSGS
Discrete Logging poj-2417 题目大意:求$a^x\equiv b(mod\qquad c)$ 注释:O(分块可过) 想法:介绍一种算法BSGS(Baby-Step Giant- ...
- 【BSGS】BZOJ3239 Discrete Logging
3239: Discrete Logging Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 729 Solved: 485[Submit][Statu ...
随机推荐
- CentOS7-samba文件共享服务
简介: Samba,是在Unix上实现SMB(Server Message Block)的一个工具套件.而SMB通常是windows用来实现共享的,包括文件和打印机等.而Unix上装上SMB,则使得U ...
- iOS开发之WIFI,3G/4G两种网络同时使用技巧
最近遇到一个比较奇葩的需求:App与硬件通过WiFi LAN通信, 同时App需要与服务器通过3G/4G WAN通信,如下图: 众所周知,手机同时打开WiFi和3G时候,会优先走WiFi.这个该如何实 ...
- 【转】MFC 程序入口和执行流程
一 MFC程序执行过程剖析 1)我们知道在WIN32API程序当中,程序的入口为WinMain函数,在这个函数当中我们完成注册窗口类,创建窗口,进入消息循环,最后由操作系统根据发送到程序窗口的消息调用 ...
- Android读书笔记二
本章讲到需要Android应用程序以及Android NDK程序来测试Linux驱动,所以所需要的工具都必须配备好.而且对工具的版本也是有一些要求,JDK,Eclipse,ADT,CDT,Androi ...
- CF-629 D - Babaei and Birthday Cake (离散化 + 线段树|树状数组)
求上升子序列的最大和.O(n^2)会暴力,在查询的时候要用线段树维护 因为权值是浮点数,故先离散化一下,设第 i 个位置的权值,从小到大排名为 id.那么dp转移中 \[d[i] = max(d[i] ...
- 【主席树】bzoj1112: [POI2008]砖块Klo
数据结构划一下水 Description N柱砖,希望有连续K柱的高度是一样的. 你可以选择以下两个动作 1:从某柱砖的顶端拿一块砖出来,丢掉不要了. 2:从仓库中拿出一块砖,放到另一柱.仓库无限大. ...
- python入门:1-99所有数的和的等式
#!/usr/bin/env python # -*- coding:utf-8 -*- #1-99所有数的和的等式 #start(开始,译音:思达二测)sum(合计,译音:桑木)temp(临时雇员, ...
- 20181206(re,正则表达式,哈希)
1.re&正则表达式 2.hashlib 一:re模块&正则表达式 正则:正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描 ...
- 用Python实现小说中的汉字频率统计
环境: Python 3的代码,亲测可用. 思路: 是先把每个字符提出来放在列表里:再过滤掉其中的标点符号:最后用字典对某个字出现的频率进行累加. 扩展: 用处很多,稍微改改,既可以用来统计小说或文 ...
- Cleaning Shifts POJ - 2376 (贪心题)
Cleaning Shifts Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 31194 Accepted: 7677 ...