kb-07-RMQ线段树--07(动态规划)
RMQ是一类解决区间最值查询的算法的通称;、一共有四类;在代码中有说明;
下面是ST算法,就是动态规划做法;
/*
RMQ算法、
RMQ是一个通称,专指区间求最值的算法;
分为:暴力,线段树,动态规划(ST),RMQ标准算法;四种
这一题用普通的线段树也是可以做的,维护区间最大值和区间最小值然后查询区间最值然后做差就行了;
这里用的是动态规划法就是ST;
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int n,q;
int a[]={},d[][]={},dd[][]={};
void RMQ_inti_min()
{
for(int i=;i<n;i++)
{
d[i][]=a[i];
}
for(int i=;(<<i)<=n;i++)//控制的是第二维;
{
for(int j=;j+(<<i)-<n;j++)
{
d[j][i]=min(d[j][i-],d[j+(<<(i-))][i-]);
}
}
}
void RMQ_inti_max()
{
for(int i=;i<n;i++)
{
dd[i][]=a[i];
}
for(int i=;(<<i)<=n;i++)//控制的是第二维;
{
for(int j=;j+(<<i)-<n;j++)
{
dd[j][i]=max(dd[j][i-],dd[j+(<<(i-))][i-]);
}
}
}
int RMQ_min(int l,int r)
{
int k=;
while((<<(k+))<=r-l+)
k++;
return min(d[l][k],d[r-(<<k)+][k]);
}
int RMQ_max(int l,int r)
{
int k=;
while((<<(k+))<=r-l+)
k++;
return max(dd[l][k],dd[r-(<<k)+][k]);
}
int main()
{
while(scanf("%d%d",&n,&q)!=EOF)
{
memset(a,,sizeof(a));
memset(d,,sizeof(d));
memset(dd,,sizeof(dd));
for(int i=;i<n;i++)
{
scanf("%d",&a[i]);
}
RMQ_inti_min();
RMQ_inti_max();
for(int i=;i<q;i++)
{
int l,r;
scanf("%d%d",&l,&r);
int max=RMQ_max(l-,r-);
int min=RMQ_min(l-,r-);
printf("%d\n",max-min);
}
}
return ;
}
kb-07-RMQ线段树--07(动态规划)的更多相关文章
- NBU 2475 Survivors(RMQ线段树)
NBU 2475Survivors 题目链接:http://acm.nbu.edu.cn/v1.0/Problems/Problem.php?pid=2475 题意:给定n个人,每个人有strengt ...
- 【agc023E】Inversions(线段树,动态规划)
[agc023E]Inversions(线段树,动态规划) 题面 AT 给定\(a_i\),求所有满足\(p_i\le a_i\)的排列\(p\)的逆序对数之和. 题解 首先如何计算排列\(p\)的个 ...
- ACM学习历程—HDU5696 区间的价值(分治 && RMQ && 线段树 && 动态规划)
http://acm.hdu.edu.cn/showproblem.php?pid=5696 这是这次百度之星初赛2B的第一题,但是由于正好打省赛,于是便错过了.加上2A的时候差了一题,当时有思路,但 ...
- UESTC 764 失落的圣诞节 --RMQ/线段树
题意:n种物品,每种物品对不同的人都有不同的价值,有三个人选,第一个为普通学生,第二个是集,第三个是祈,集和祈可以选一样的,并且还会获得加分,集和祈选的普通学生都不能选,问三个人怎样选才能使总分最高. ...
- [RMQ] [线段树] POJ 3368 Frequent Values
一句话,多次查询区间的众数的次数 注意多组数据!!!! RMQ方法: 预处理 i 及其之前相同的数的个数 再倒着预处理出 i 到不是与 a[i] 相等的位置之前的一个位置, 查询时分成相同的一段和不同 ...
- VJ16216/RMQ/线段树单点更新
题目链接 /* 单点更新,用RMQ维护最大值,add对c[i]修改,或加,或减. 求[l,r]的和,用sum(r)-sum(l-1).即可. */ #include<cmath> #inc ...
- 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)
题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ...
- lca 欧拉序+rmq(st) 欧拉序+rmq(线段树) 离线dfs 倍增
https://www.luogu.org/problemnew/show/P3379 1.欧拉序+rmq(st) /* 在这里,对于一个数,选择最左边的 选择任意一个都可以,[left_index, ...
- poj2763(lca / RMQ + 线段树)
题目链接: http://poj.org/problem?id=2763 题意: 第一行输入 n, q, s 分别为树的顶点个数, 询问/修改个数, 初始位置. 接下来 n - 1 行形如 x, y, ...
随机推荐
- SAP Cloud for Customer的Account Team里的role如何配置
Account Team标签页里点击Add按钮: 这些下拉菜单里的role在哪里配置? 在business configuration工作中心:Implementation projects-> ...
- MovieReview—Black Panther(黑豹)
Justice & Evil The night before the night, i saw the latest movie in the Marvel series at JiaH ...
- 融云红包全新升级,让App用户更便捷地用“钱”交流感情!
随着移动互联网的飞速发展,如何增强社交关系.留住用户的心已成为移动社交化时代各类App持续探索的问题,除了接入即时通讯的能力,众多社交平台开始通过趣味性十足的红包功能为App中的社交场景赋能.当即时通 ...
- Android(java)学习笔记114:Service生命周期
1.Service的生命周期 Android中的Service(服务)与Activity不同,它是不能和用户交互,不能自己启动的,运行在后台的程序,如果我们退出应用的时候,Servic ...
- 《队长说得队》第八次团队作业Alpha冲刺
项目 内容 这个作业属于哪个课程 >>2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 >>实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 ...
- 使用struts2实现文件上传与下载功能
这个问题做了两天,在网上找了很多例子,但是还有一些功能没有实现,暂时先把代码贴出来,以后在做这方面的功能时在修改 文件上传: 一开始我在网上找到基于servlet+jsp环境写的文件上传,但是在将页面 ...
- Nginx超时配置
Nginx超时配置 1.client_header_timeout 语法client_header_timeout time 默认值60s 上下文http server 说明 指定等待client发送 ...
- c++作业:求N的阶乘。
N的阶乘就是n.(n-1)! 5的阶乘是什么?5*4*3*2*1 #include <iostream> using namespace std; int jiecheng(int num ...
- cocos2d-x中的基本动作
判断一个精灵被点击: 1.层要接收点击消息.2.回调函数中取得点击坐标.3.取得精灵用boudingBox().containsPoint函数判断.(或使用 convertTouchToNodeSpa ...
- 35. Search Insert Position@python
Given a sorted array and a target value, return the index if the target is found. If not, return the ...