本文属于图神经网络的系列文章,文章目录如下:


笔者最近看了一些图与图卷积神经网络的论文,深感其强大,但一些Survey或教程默认了读者对图神经网络背景知识的了解,对未学过信号处理的读者不太友好。同时,很多教程只讲是什么,不讲为什么,也没有梳理清楚不同网络结构的区别与设计初衷(Motivation)。

因此,本文试图沿着图神经网络的历史脉络,从最早基于不动点理论的图神经网络(Graph Neural Network, GNN)一步步讲到当前用得最火的图卷积神经网络(Graph Convolutional Neural Network, GCN), 期望通过本文带给读者一些灵感与启示。

  • 本文的提纲与叙述要点主要参考了2篇图神经网络的Survey,分别是来自IEEE Fellow的A Comprehensive Survey on Graph Neural Networks[1] 以及来自清华大学朱文武老师组的Deep Learning on Graphs: A Survey[7], 在这里向两篇Survey的作者表示敬意。
  • 同时,本文关于部分图卷积神经网络的理解很多都是受到知乎问题[8]高赞答案的启发,非常感谢他们的无私分享!
  • 最后,本文还引用了一些来自互联网的生动形象的图片,在这里也向这些图片的作者表示感谢。本文中未注明出处的图片均为笔者制作,如需转载或引用请联系本人。

历史脉络

在开始正文之前,笔者先带大家回顾一下图神经网络的发展历史。不过,因为图神经网络的发展分支非常之多,笔者某些叙述可能并不全面,一家之言仅供各位读者参考:

  1. 图神经网络的概念最早在2005年提出。2009年Franco博士在其论文 [2]中定义了图神经网络的理论基础,笔者呆会要讲的第一种图神经网络也是基于这篇论文。
  2. 最早的GNN主要解决的还是如分子结构分类等严格意义上的图论问题。但实际上欧式空间(比如像图像 Image)或者是序列(比如像文本 Text),许多常见场景也都可以转换成图(Graph),然后就能使用图神经网络技术来建模。
  3. 2009年后图神经网络也陆续有一些相关研究,但没有太大波澜。直到2013年,在图信号处理(Graph Signal Processing)的基础上,Bruna(这位是LeCun的学生)在文献 [3]中首次提出图上的基于频域(Spectral-domain)和基于空域(Spatial-domain)的卷积神经网络。
  4. 其后至今,学界提出了很多基于空域的图卷积方式,也有不少学者试图通过统一的框架将前人的工作统一起来。而基于频域的工作相对较少,只受到部分学者的青睐。
  5. 值得一提的是,图神经网络与图表示学习(Represent Learning for Graph)的发展历程也惊人地相似。2014年,在word2vec [4]的启发下,Perozzi等人提出了DeepWalk [5],开启了深度学习时代图表示学习的大门。更有趣的是,就在几乎一样的时间,Bordes等人提出了大名鼎鼎的TransE [6],为知识图谱的分布式表示(Represent Learning for Knowledge Graph)奠定了基础。

图神经网络(Graph Neural Network)

首先要澄清一点,除非特别指明,本文中所提到的图均指图论中的图(Graph)。它是一种由若干个结点(Node)及连接两个结点的(Edge)所构成的图形,用于刻画不同结点之间的关系。下面是一个生动的例子,图片来自论文[7]:

状态更新与输出

最早的图神经网络起源于Franco博士的论文[2], 它的理论基础是不动点理论。给定一张图 \(G\),每个结点都有其自己的特征(feature), 本文中用\(\mathbf{x}_v\)表示结点v的特征;连接两个结点的边也有自己的特征,本文中用\(\mathbf{x}_{(v,u)}\)表示结点v与结点u之间边的特征;GNN的学习目标是获得每个结点的图感知的隐藏状态 \(\mathbf{h}_v\)(state embedding),这就意味着:对于每个节点,它的隐藏状态包含了来自邻居节点的信息。那么,如何让每个结点都感知到图上其他的结点呢?GNN通过迭代式更新所有结点的隐藏状态来实现,在\(t+1\)时刻,结点\(v\)的隐藏状态按照如下方式更新:

\[

从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)的更多相关文章

  1. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  2. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  3. 【GCN】图卷积网络初探——基于图(Graph)的傅里叶变换和卷积

    [GCN]图卷积网络初探——基于图(Graph)的傅里叶变换和卷积 2018年11月29日 11:50:38 夏至夏至520 阅读数 5980更多 分类专栏: # MachineLearning   ...

  4. [LeetCode]Copy List with Random Pointer &Clone Graph 复杂链表的复制&图的复制

    /** * Definition for singly-linked list with a random pointer. * struct RandomListNode { * int label ...

  5. Nebula Graph 技术总监陈恒:图数据库怎么和深度学习框架进行结合?

    引子 Nebula Graph 的技术总监在 09.24 - 09.30 期间同开源中国·高手问答的小伙伴们以「图数据库的设计和实践」为切入点展开讨论,包括:「图数据库的存储设计」.「图数据库的计算设 ...

  6. python生成组织架构图(网络拓扑图、graph.editor拓扑图编辑器)

    Graph.Editor是一款基于HTML5技术的拓补图编辑器,采用jquery插件的形式,是Qunee图形组件的扩展项目,旨在提供可供扩展的拓扑图编辑工具, 拓扑图展示.编辑.导出.保存等功能,此外 ...

  7. CF1082G:G. Petya and Graph(裸的最大闭合权图)

    Petya has a simple graph (that is, a graph without loops or multiple edges) consisting of n n vertic ...

  8. 论文解读(GMT)《Accurate Learning of Graph Representations with Graph Multiset Pooling》

    论文信息 论文标题:Accurate Learning of Graph Representations with Graph Multiset Pooling论文作者:Jinheon Baek, M ...

  9. 各种卷积类型Convolution

    从最开始的卷积层,发展至今,卷积已不再是当初的卷积,而是一个研究方向.在反卷积这篇博客中,介绍了一些常见的卷积的关系,本篇博客就是要梳理这些有趣的卷积结构. 阅读本篇博客之前,建议将这篇博客结合在一起 ...

随机推荐

  1. 九度OJ 1111:单词替换 (查找)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:4473 解决:1268 题目描述: 输入一个字符串,以回车结束(字符串长度<=100).该字符串由若干个单词组成,单词之间用一个空格隔 ...

  2. 清理yum 缓存

    两条命令 yum clean all 以及 rm -rf /var/cache/yum/* 如何有效的清理yum缓存 - CSDN博客 https://blog.csdn.net/nsrainbow/ ...

  3. Eliminates these repeated computation in multi aggregations query

    https://github.com/pingcap/tispark/commit/dcca23bfa1aa0c356a4280d82bc8301c0de08318 scala> spark.s ...

  4. 阿里 JAVA 开发手册 学习 4 工程规约

    应用分层 1.分层如下 1)开放接口层:可以直接封装Service接口暴露成RPC:通过web封装成http接口:网关控制层等. 2)终端显示层:各个端的模板渲染并执行显示层. 3)Web层:主要是度 ...

  5. "php"正则表达式使用总结

    一直对php的正则表达式的理解不是很深刻,而且是很一知半解,所以把自己用的的正则表达式总结下,以后方便查阅,以后遇到正则表达式的时候然后再追加到该文档的后面: /** * php常用正则表达式 * p ...

  6. 机器学习:Principal components analysis (主分量分析)

    Principal components analysis 这一讲,我们简单介绍Principal Components Analysis(PCA),这个方法可以用来确定特征空间的子空间,用一种更加紧 ...

  7. python装饰器精髓代码

    #!/usr/bin/env python #-*- coding:utf-8 -*- import time def foo(func): def inner(): print('fs...') f ...

  8. JVM介绍(一)

    JVM是运行在操作系统之上的,它与硬件没有直接的交互 类装载器ClassLoader 负责加载class文件,class文件在文件开头有特定的文件标示,并且ClassLoader只负责class文件的 ...

  9. asp.net中FileUpload得到上传文件的完整路径

    asp.net中FileUpload得到上传文件的完整路径 Response.Write("完整路径:" + Server.MapPath(FileUpload1.PostedFi ...

  10. 管理SSIS 日志

    转自:http://www.cnblogs.com/biwork/p/biworklog.html 一直准备写这么一篇有关 SSIS 日志系统的文章,但是发现很难一次写的很完整.因为这篇文章的内容可扩 ...