洛谷P3723 [AH2017/HNOI2017]礼物(FFT)
首先,两个数同时增加自然数值相当于只有其中一个数增加(此增加量可以小于0)
我们令$x$为当前的增加量,${a},{b}$分别为旋转后的两个数列,那么$$ans=\sum_{i=1}^n(a_i+x-b_i)^2$$
然后把第$i$项提出来并展开,可得$$(a_i+x-b_i)^2=a_i^2+b_i^2+x^2+2xa_i-2xb_i-2a_ib_i$$
那么答案就是$$ans=\sum_{i=1}^na_i^2+\sum_{i=1}^nb_i^2+nx^2+2x(\sum_{i=1}^na_i+\sum_{i=1}^nb_i)-2\sum_{i=1}^na_ib_i$$
然后发现,答案里面只有最后一项与$a,b$的顺序有关(也就是旋转成了什么样子),前面的项都是常数(对同一个$x$来说),那么我们只要令$\sum_{i=1}^na_ib_i$最大就能让答案最小了
我们考虑一下,如果把数列$b$给反过来,那么最后一项就变成了$\sum_{i=1}^na_ib_{n-i+1}$,这是一个卷积的形式,可以直接用FFT计算1$项的系数)
那么我们把数列$b$反过来,然后把数列$a$倍长,那么两式卷积之后第$n+1$到第$2n$项里面最大值就是最大的$\sum_{i=1}^na_ib_i$
于是只要枚举一下$x$和旋转(多项式的第几项)就好了
//minamoto
#include<iostream>
#include<cstdio>
#include<cmath>
#define ll long long
#define inf 0x3f3f3f3f3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;const double Pi=acos(-1.0);
struct complex{
double x,y;
complex(double xx=,double yy=){x=xx,y=yy;}
inline complex operator +(complex b){return complex(x+b.x,y+b.y);}
inline complex operator -(complex b){return complex(x-b.x,y-b.y);}
inline complex operator *(complex b){return complex(x*b.x-y*b.y,x*b.y+y*b.x);}
}A[N],B[N];
int n,m,l,r[N],limit=,a[N],b[N];ll a1,a2,b1,b2,ans=inf;
void FFT(complex *A,int type){
for(int i=;i<limit;++i)
if(i<r[i]) swap(A[i],A[r[i]]);
for(int mid=;mid<limit;mid<<=){
complex Wn(cos(Pi/mid),type*sin(Pi/mid));
for(int R=mid<<,j=;j<limit;j+=R){
complex w(,);
for(int k=;k<mid;++k,w=w*Wn){
complex x=A[j+k],y=w*A[j+mid+k];
A[j+k]=x+y,A[j+mid+k]=x-y;
}
}
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=;i<=n;++i)
a[i]=read(),a1+=a[i]*a[i],a2+=a[i];
for(int i=;i<=n;++i)
b[i]=read(),b1+=b[i]*b[i],b2+=b[i];
for(int i=;i<=n;++i)
A[i].x=A[i+n].x=a[i],B[i].x=b[n-i+];
while(limit<=(n*)) limit<<=,++l;
for(int i=;i<limit;++i)
r[i]=(r[i>>]>>)|((i&)<<(l-));
FFT(A,),FFT(B,);
for(int i=;i<limit;++i) A[i]=A[i]*B[i];
FFT(A,-);
for(int i=;i<limit;++i) A[i].x=(ll)(A[i].x/limit+0.5);
for(int i=;i<=n;++i)
for(int j=-m;j<=m;++j)
cmin(ans,a1+b1+j*j*n+2ll*j*(a2-b2)-2ll*(ll)A[n+i].x);
printf("%lld\n",ans);
return ;
}
洛谷P3723 [AH2017/HNOI2017]礼物(FFT)的更多相关文章
- 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告
P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...
- 洛谷P3723 [AH2017/HNOI2017]礼物
吴迪说他化学会考上十分钟就想出来了,太神了%%%不过我也十分钟 但是调了一个多小时啊大草 懒得人话翻译了,自己康吧: 我的室友(真的是室友吗?)最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决 ...
- [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...
- LUOGU P3723 [AH2017/HNOI2017]礼物 (fft)
传送门 解题思路 首先我们设变化量为\(r\),那么最终的答案就可以写成 : \[ ans=min(\sum\limits_{i=1}^n(a_i-b_i+r)^2) \] \[ ans=min(\s ...
- P3723 [AH2017/HNOI2017]礼物
题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1 c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...
- 洛谷 P3721 - [AH2017/HNOI2017]单旋(LCT)
洛谷题面传送门 终于调出来这道题了,写篇题解( 首先碰到这样的题我们肯定要考虑每种操作会对树的形态产生怎样的影响: 插入操作:对于 BST 有一个性质是,当你插入一个节点时,其在 BST 上的父亲肯定 ...
- [AH2017/HNOI2017]礼物(FFT)
题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...
- 洛谷P3722 [AH2017/HNOI2017]影魔(线段树)
题意 题目链接 Sol 题解好神仙啊qwq. 一般看到这种考虑最大值的贡献的题目不难想到单调数据结构 对于本题而言,我们可以预处理出每个位置左边第一个比他大的位置\(l_i\)以及右边第一个比他大的位 ...
- 洛谷P3721 [AH2017/HNOI2017]单旋(线段树 set spaly)
题意 题目链接 Sol 这题好毒瘤啊.. 首先要观察到几个性质: 将最小值旋转到根相当于把右子树变为祖先的左子树,然后将原来的根变为当前最小值 上述操作对深度的影响相当于右子树不变,其他的位置-1 然 ...
随机推荐
- Erlang function guards NOTE
Note: I've compared , and ; in guards to the operators andalso and orelse. They're not exactly the s ...
- EasyDarwin开源流媒体服务器支持basic基本认证和digest摘要认证解析
本文转自EasyDarwin开源团队成员ss的博客:http://blog.csdn.net/ss00_2012/article/details/52262621 RTSP认证作为RTSP标准协议的一 ...
- Phoenix 索引生命周期
本文主要介绍Phoenix索引状态的生命周期,帮助大家解惑“为什么我的phoenix索引不能正常使用了?” 索引状态 索引总共有以下几个状态,其状态信息存储在SYSTEM.CATALOG表中.可以通过 ...
- ElasticSearch(十一)批量CURD bulk
1.bulk语法 POST /_bulk { "delete": { "_index": "test_index", "_type ...
- spawn类expect方法详解
本文我们将介绍spawn类的基本方法expect方法,这个方法是用来匹配返回的结果,这个返回的结果是指子程序的返回结果,同时会将匹配的相关信息保存在spawn类的相关属性中. 基本属性包括三个,第一个 ...
- Mac下通过命令行安装npm install -g 报错,如何解决?
1, 使用 sudo npm install -g n2, 或者 sudo chmod -R 777 /usr/local/lib,然后 npm install -g
- WSDL文档深入分析
借助jdk的wsimort.exe工具生成客户端代码 格式:wsimport -keep url //url为wsdl文件的路径 直接生成客户端代码会抛异常, 无法生成客户端代码, 解决办法: 将 ...
- java 基于百度地图API GPS经纬度解析地址
首先这是百度地图api 的接口地址,基于接口的参数,不过多介绍,其中都提供相应的介绍: http://lbsyun.baidu.com/index.php?title=webapi/guide/web ...
- 001 - 配置Pycharm的字体大小
本文记录的是Pycharm2017年1月版本 1 配置代码区的字体大小 位置在 File -> setting -> Editor -> Color&Fonts -> ...
- RTP Payload Format for Transport of MPEG-4 Elementary Streams over http
1.SDP (1)Http Request GET /getSdpForUrl?HttpUrl=nphMpeg4/g726-640x480 HTTP/1.0/r/n Host: 58.63.71.90 ...