bzoj1101:[POI2007]ZAP-Queries
[POI2007]ZAP-Queries
题意简述:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。
Solution
很显然这是一个莫比乌斯反演题。
\]
然后我们设
g(x)=\sum_{x|d}f(d)
\]
有
\]
因为
\]
然后可以\(f(x)\)可以变成这样
\]
我们设\(t=\frac{d}{x}\),\(f(x)\)就成了这样
\]
此时\(f(x)\)已经可以\(O(n)\)计算了,但是由于多组询问,还需要采取数论分块的方式将时间复杂度优化到\(O(\sqrt{n})\)
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
void read(int &x) {
char ch; bool ok;
for(ok=0,ch=getchar(); !isdigit(ch); ch=getchar()) if(ch=='-') ok=1;
for(x=0; isdigit(ch); x=x*10+ch-'0',ch=getchar()); if(ok) x=-x;
}
#define rg register
const int maxn=5e4;long long ans;
int n,m,d,mu[maxn],prime[maxn],T,tot;bool vis[maxn];
void prepare()
{
mu[1]=1;
for(rg int i=2;i<=maxn;i++)
{
if(!vis[i])prime[++tot]=i,mu[i]=-1;
for(rg int j=1;j<=tot&&prime[j]*i<=maxn;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else {mu[i*prime[j]]=0;break;}
}
}
for(rg int i=1;i<=maxn;i++)mu[i]+=mu[i-1];
}
int main()
{
read(T);prepare();
while(T--)
{
read(n),read(m),read(d);if(n>m)swap(n,m);
ans=0;
for(rg int i=1,j;i<=n;i=j+1)
{
j=min(n/(n/i),m/(m/i));
long long t=1ll*(n/i/d)*(m/i/d);
ans+=t*(mu[j]-mu[i-1]);
}
printf("%lld\n",ans);
}
}
bzoj1101:[POI2007]ZAP-Queries的更多相关文章
- [BZOJ1101][POI2007]Zap
[BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...
- BZOJ1101 POI2007 Zap 【莫比乌斯反演】
BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...
- BZOJ1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2951 Solved: 1293[Submit][Status ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
- BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers
Zap FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到 ...
- 【莫比乌斯反演】BZOJ1101 [POI2007]zap
Description 回答T组询问,有多少组gcd(x,y)=d,x<=a, y<=b.T, a, b<=4e5. Solution 显然对于gcd=d的,应该把a/d b/d,然 ...
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
- BZOJ 1101: [POI2007]Zap
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2262 Solved: 895[Submit][Status] ...
- BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )
求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...
- [POI2007]Zap
bzoj 1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Descriptio ...
随机推荐
- 如何缓存hbase数据以减少下次取数据的时间
缓存从hbase取得的数据的好处是显而易见的,缓存到本地以后,如果下次的输入能够直接从已缓存的本地文件中取得数据就无需再次访问hbase数据库,这样一来数据量大的话可以节省大量的访问hbase数据库的 ...
- 在c中break的使用
break语句通常用在循环语句和开关语句中.当break用于开关语句switch中时,可使程序跳出switch而执行switch以后的语句:如果没有break语句,则会从满足条件的地方(即与switc ...
- WSDL文档深入分析
借助jdk的wsimort.exe工具生成客户端代码 格式:wsimport -keep url //url为wsdl文件的路径 直接生成客户端代码会抛异常, 无法生成客户端代码, 解决办法: 将 ...
- bzoj5259: [Cerc2017]区间
还是很强的一个题 ORZ肉丝哥哥 对于两个相交区间,假如他们两个都是可行的,那么他们的交也可行,不然没可能两边都把它缺的补上 那么对于答案区间,向右找到第一个可行区间右端点覆盖询问区间,就是最优的 考 ...
- PYTHON 爬虫笔记四:正则表达式基础用法
知识点一:正则表达式详解及其基本使用方法 什么是正则表达式 正则表达式对子符串操作的一种逻辑公式,就是事先定义好的一些特定字符.及这些特定字符的组合,组成一个‘规则字符串’,这个‘规则字符串’用来表达 ...
- linux应用之mysql数据库指定版本的yum安装(centos)
A Quick Guide to Using the MySQL Yum Repository Abstract The MySQL Yum repository provides RPM packa ...
- hdu-5750 Dertouzos(数论)
题目链接: Dertouzos Time Limit: 7000/3500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Other ...
- Java 并发 —— volatile 关键字
volatile 修饰变量等于向编译器传达如下两层含义: 保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的. 禁止进行指令重排序. volat ...
- 「网络流24题」「LuoguP3358」 最长k可重区间集问题(费用流
题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...
- 微信小程序的ajax数据请求wx.request
微信小程序的ajax数据请求,很多同学找不到api在哪个位置,这里单独把小程序的ajax请求给列出来,微信小程序的请求就是wx.request这个api,wx.request(一些对象参数),微信小程 ...