题目

现有一个房间,墙上挂有 n 只已经打开的灯泡和 4 个按钮。在进行了 m 次未知操作后,你需要返回这 n 只灯泡可能有多少种不同的状态。

假设这 n 只灯泡被编号为 [1, 2, 3 ..., n],这 4 个按钮的功能如下:

将所有灯泡的状态反转(即开变为关,关变为开)

将编号为偶数的灯泡的状态反转

将编号为奇数的灯泡的状态反转

将编号为 3k+1 的灯泡的状态反转(k = 0, 1, 2, ...)

示例 1:

输入: n = 1, m = 1.

输出: 2

说明: 状态为: [开], [关]

示例 2:

输入: n = 2, m = 1.

输出: 3

说明: 状态为: [开, 关], [关, 开], [关, 关]

示例 3:

输入: n = 3, m = 1.

输出: 4

说明: 状态为: [关, 开, 关], [开, 关, 开], [关, 关, 关], [关, 开, 开].

注意: n 和 m 都属于 [0, 1000].

解法

这道题与灯泡开关1是有所区别的,灯泡开关1的题目类似数学问题,找到规律后可以很清晰的确定出最后剩余的一定是完全平方数。这道题找的规律略为复杂一些:

首先考虑周期性:假设灯足够多,如果只有按钮1,至多两种可能:全灭或者全亮;如果按钮2和按钮3考虑进来的话,最后灯的状态就是以2为周期的;如果把按钮4考虑进来的话最后灯的状态是以6为周期的,因为按钮4是(3*k+1)。

按钮的按的顺序可以交换不改变结果;同一个按钮状态跟按的奇偶次有关;按钮1、按钮2、按钮3其中两个是可以替代另一个的,也就是说按这三个中的任意两个等于按下另一个,四个按钮中有效的也就是三个,三个按钮各自按和不按两种情况,最多有8种状态。

当 m =3时,m = 4 时这8种状态都是可以实现的,m>=5的情况只要从m = 3 或者m = 4的情况对某个灯增加按偶数次即可得到。

用一个二进制的数来表示灯的状态,灯的状态以6位周期,所以只看6位。初始状态为000000,按一次按钮1变为111111;按一次按钮2变为010101;按一次按钮3变为101010;按一次按钮4变为100100。

m = 1时,按一次开关有四种可能111111、010101、101010、100100,如果n = 1,就看第一位,只有1和0两种可能。如果n = 2看前两位,11,01,10三种,如果n >=3 那么就有四种可能。

m = 2时,按两次开关有4^2=16种可能,但是不同的状态有7种:000000、001110、010101、011011、101010、110001、111111。如果n=1,看第一位,有0和1两种可能。如果n=2,看前两位,有00、01、10、11四种可能;如果n>=3,所有7种可能都互不相同。

m>=3时,总共有8种不同可能:000000、001110、010101、011011、100100、101010、110001、111111。如果n=1,可以只看第1位,有0和1两种可能;如果n=2,看前两位,有00、01、10、11四种可能;如果n>=3,所有8种可能都互不相同。

代码:

class Solution {
public:
int flipLights(int n, int m) {
if (m == 0) return 1;
if (n <= 0 || m < 0) return 0;
if (n == 1) return 2;
else if (n == 2) return (m == 1) ? 3 : 4;
else return (m == 1) ? 4 : ((m == 2) ? 7 : 8);
}
};

LeetCode:灯泡开关2的更多相关文章

  1. Leetcode 672.灯泡开关II

    灯泡开关II 现有一个房间,墙上挂有 n 只已经打开的灯泡和 4 个按钮.在进行了 m 次未知操作后,你需要返回这 n 只灯泡可能有多少种不同的状态. 假设这 n 只灯泡被编号为 [1, 2, 3 . ...

  2. Leetcode 319.灯泡开关

    灯泡开关 初始时有 n 个灯泡关闭.第 1 轮,你打开所有的灯泡.第 2 轮,每两个灯泡你关闭一次.第 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭).第 i 轮,每 i 个灯泡切换 ...

  3. Java实现 LeetCode 672 灯泡开关 Ⅱ(数学思路问题)

    672. 灯泡开关 Ⅱ 现有一个房间,墙上挂有 n 只已经打开的灯泡和 4 个按钮.在进行了 m 次未知操作后,你需要返回这 n 只灯泡可能有多少种不同的状态. 假设这 n 只灯泡被编号为 [1, 2 ...

  4. Java实现 LeetCode 319 灯泡开关

    319. 灯泡开关 初始时有 n 个灯泡关闭. 第 1 轮,你打开所有的灯泡. 第 2 轮,每两个灯泡你关闭一次. 第 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭).第 i 轮,每 ...

  5. [LeetCode] Bulb Switcher 灯泡开关

    There are n bulbs that are initially off. You first turn on all the bulbs. Then, you turn off every ...

  6. [Leetcode] 第319题 灯泡开关

    一.题目描述 初始时有 n 个灯泡关闭. 第 1 轮,你打开所有的灯泡. 第 2 轮,每两个灯泡你关闭一次. 第 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭).第 i 轮,每 i  ...

  7. [LeetCode] Bulb Switcher II 灯泡开关之二

    There is a room with n lights which are turned on initially and 4 buttons on the wall. After perform ...

  8. [LeetCode]319. Bulb Switcher灯泡开关

    智商压制的一道题 这个题有个数学定理: 一般数(非完全平方数)的因子有偶数个 完全平凡数的因子有奇数个 开开关的时候,第i个灯每到它的因子一轮的时候就会拨动一下,也就是每个灯拨动的次数是它的因子数 而 ...

  9. [Swift]LeetCode319. 灯泡开关 | Bulb Switcher

    There are n bulbs that are initially off. You first turn on all the bulbs. Then, you turn off every ...

随机推荐

  1. 51Nod 1294 修改数组 —— LIS

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1294 1294 修改数组  题目来源: HackerRank ...

  2. zabbix 报表

    摘自: https://www.w3cschool.cn/zabbix_manager/zabbix_manager-z45f1zie.html

  3. Centos7 安装lnmp

    Centos7 安装lnmp 1.下载 wget http://soft.vpser.net/lnmp/lnmp1.5-full.tar.gz 2.解压 tar -zvxf lnmp1.5-full. ...

  4. JNDI数据源配置

    一.数据源的由来 在Java开发中,使用JDBC操作数据库的四个步骤如下:   ①加载数据库驱动程序(Class.forName("数据库驱动类");) ②连接数据库(Connec ...

  5. tensorflow 实现逻辑回归——原以为TensorFlow不擅长做线性回归或者逻辑回归,原来是这么简单哇!

    实现的是预测 低 出生 体重 的 概率.尼克·麦克卢尔(Nick McClure). TensorFlow机器学习实战指南 (智能系统与技术丛书) (Kindle 位置 1060-1061). Kin ...

  6. java.sql.SQLException: Access denied for user 'Administrator'@'localhost' (using password: YES)

    早上在做MyBatis+Spring整合的时候爆了个奇葩的bug: 十月 19, 2017 11:18:11 上午 org.springframework.context.support.Abstra ...

  7. 恋恋风辰 对于redis底层框架的理解(一)

    近期学习了redis底层框架,好多东西之前都没听说过,算是大开眼界了. 先梳理下redis正常的通讯流程吧 首先服务器启动都有主函数main,这个main函数就在redis.c里 首先是initser ...

  8. 洛谷 P5061 秘密任务 —— 二分图

    题目:https://www.luogu.org/problemnew/show/P5061 首先,“配合默契”就是连边的意思: 但发现答案不好统计,因为有连边的两个点可以分在一组,也可以不分在一组: ...

  9. 树——平衡二叉树插入和查找的JAVA实现(2):增加删除方法

    package com.tomsnail.data.tree; /** * AVL二叉平衡树 * @author tomsnail * @date 2015年3月30日 下午4:35:50 */ pu ...

  10. 转:Serializable---序列化

    Serializable        今天在看代码的时候,看到[Serializable],不明白是什么意思.查阅了网上的一些资料,才明白这是指给类添加序列化的特性,即添加后它就可以进行序列化,那什 ...