题意:

数竞选手小r最喜欢做的题型是数列大题,并且每一道都能得到满分。

你可能不相信,但其实他发现了一个结论:只要是数列,无论是给了通项还是给了递推式,无论定义多复杂,都可以被搞成等差数列。这样,只要他精通了等差数列,他就能做出任何数列题目。

等差数列是数列的一种。在等差数列中,任何相邻两项的差相等,该差值称为公差。例如数列3,5,7,9,11,13,⋯3,5,7,9,11,13,⋯就是一个等差数列。 在这个数列中,从第二项起,每项与其前一项之差都等于2,即公差为2。

小r熟知等差数列的各种公式:如果一个等差数列的首项标为a1a1,公差标为d,那么该等差数列第n项的表达式为

an=a1+(n−1)dan=a1+(n−1)d

等差数列的任意两项之间存在关系

an=am+(n−m)dan=am+(n−m)d

和为SnSn,首项a1a1,末项 anan,公差d,项数n,同时可得

Sn=a1+a2+a3+⋯+an=∑n−1i=0(a1+id)=n(a1+an)2=n[2a1+(n−1)d]2Sn=a1+a2+a3+⋯+an=∑i=0n−1(a1+id)=n(a1+an)2=n[2a1+(n−1)d]2

为什么他这么熟练呢?因为小r在小时候就发现这个公式了。在他三年级的时候,他的老师让学生们做从1加到100的习题。小r很快发现数列的规律,用上面的公式得出了5050的答案。于是小r在后来编写你的教科书的时候,经常把如上公式写成一个等差数列的和等于其首项与末项的和乘以项数除以2。

顺便一提,小r在证明上面的公式时,使用了自创的伪证法,先做假设再证明,为世人所称道:

先证n=1时该公式成立:等式左边=a1=a1,等式右边=a1+a12=a1=a1+a12=a1(需注意在此时首项和末项均为a1a1),两边相等,得证。

再假设n=k时该公式成立,有Sk=(a1+ak)k2=[2a1+(k−1)d]k2。Sk=(a1+ak)k2=[2a1+(k−1)d]k2。

现在证明n=k+1时该公式成立:

Sk+1=Sk+ak+1=(2a1+(k−1)d)k2+a1+kdSk+1=Sk+ak+1=(2a1+(k−1)d)k2+a1+kd

=2a1k+2a1+k2d+kd2=(2a1+kd)(k+1)2=(a1+ak+1)(k+1)2, 因为=2a1k+2a1+k2d+kd2=(2a1+kd)(k+1)2=(a1+ak+1)(k+1)2,

ak+1=a1+kd,所以,得证。 看到这里,你不由得发出赞叹:为什么小r这么强呢? 然而,强如小r,是不屑于计算一些琐碎的计算的。现在小r给了你一个数X,要求你搞出一个等差数列a使得 ak+1=a1+kd

Sn=a1+a2+a3+⋯+an=∑n−1i=0(a1+id)=n(a1+an)2=X

思路:

做出等差数列,只需做出1项的等差数列即可。

代码:

#include<bits/stdc++.h>
using namespace std; int main()
{
int n;
cin >> n;
cout << 1 << endl;
cout << n << endl;
return 0;
}

  

长春理工大学第十四届程序设计竞赛(重现赛)H.Arithmetic Sequence的更多相关文章

  1. 长春理工大学第十四届程序设计竞赛(重现赛)M.Orx Zone

    链接:https://ac.nowcoder.com/acm/contest/912/M 题意: Daenerys Stormborn, 风暴中出生的丹尼莉丝,the Unburnt, 烧不死的,Qu ...

  2. 长春理工大学第十四届程序设计竞赛(重现赛)L.Homework Stream

    链接:https://ac.nowcoder.com/acm/contest/912/L 题意: 作为大珩班尖子生,小r每天有很多作业要完成,例如工图.工图和工图. 很显然,做作业是要有顺序的.作业之 ...

  3. 长春理工大学第十四届程序设计竞赛(重现赛)J.Printout

    链接:https://ac.nowcoder.com/acm/contest/912/J 题意: 小r为了打校赛,他打算去打字社打印一份包含世界上所有算法的模板. 到了打字社,小r一看价格:总打印页数 ...

  4. 长春理工大学第十四届程序设计竞赛(重现赛)I.Fate Grand Order

    链接:https://ac.nowcoder.com/acm/contest/912/I 题意: Fate Grand Order是型月社发行的角色扮演类手机游戏,是著名的氪金抽卡"垃圾&q ...

  5. 长春理工大学第十四届程序设计竞赛(重现赛)F.Successione di Fixoracci

    链接:https://ac.nowcoder.com/acm/contest/912/F 题意: 动态规划(Dynamic programming,简称dp)是一种通过把原问题分解为相对简单的子问题的 ...

  6. 长春理工大学第十四届程序设计竞赛(重现赛)B.Bowling Game

    链接:https://ac.nowcoder.com/acm/contest/912/B 题意: 链接:https://ac.nowcoder.com/acm/contest/912/B来源:牛客网 ...

  7. 长春理工大学第十四届程序设计竞赛(重现赛)J

    J.Printout 题目:链接:https://ac.nowcoder.com/acm/contest/912/J 题目: 小r为了打校赛,他打算去打字社打印一份包含世界上所有算法的模板. 到了打字 ...

  8. 长春理工大学第十四届程序设计竞赛(重现赛)I

    I.Fate Grand Order 题目链接:https://ac.nowcoder.com/acm/contest/912/I 题目: Fate Grand Order是型月社发行的角色扮演类手机 ...

  9. 长春理工大学第十四届程序设计竞赛(重现赛)L

    L.Homework Stream 题目链接:https://ac.nowcoder.com/acm/contest/912/L 题目 作为大珩班尖子生,小r每天有很多作业要完成,例如工图.工图和工图 ...

随机推荐

  1. Android SDK中 tools 目录下的工具介绍

    Android SDK包含了各种各样的定制工具,简介如下: Android模拟器(Android Emulator )它是在你的计算机上运行的一个虚拟移动设备.你可以使用模拟器来在一个实际的Andro ...

  2. BZOJ 1657 [Usaco2006 Mar]Mooo 奶牛的歌声:单调栈【高度序列】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1657 题意: Farmer John的N(1<=N<=50,000)头奶牛整齐 ...

  3. URL过滤

    URL过滤 就是网址过滤.把不安全的.少儿不宜的.政治的东西过滤掉,访问这些网址就会提示受限,不能访问. 一.url过滤简介 针对企业对员工上网行为的控制管理,可以采用URL过滤技术.如企业不允许研发 ...

  4. 通过在classpath自动扫描方式把组件纳入spring容器中管理。

    前面的例子我们都是使用xml的bean定义来配置组件,如果组件过多很臃肿.spring2.5引入了组件自动扫描机制,在指定目录下查找标注了@Component.@Service.@Controller ...

  5. codevs 1144 守望者的逃离

    传送门 1144 守望者的逃离 2007年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解   题目描述 Description 恶 ...

  6. element el-input 自动获取焦点和IE下光标位置解决方法

    在实际开发中我们经常会碰到这样的场景,就是有input的地方都喜欢切换过去input自动获取焦点. 如果这个问题是在input中,很容易就实现了,但是element里面的el-input看源码,其实不 ...

  7. BZOJ1146:[CTSC2008]网络管理

    浅谈树状数组与线段树:https://www.cnblogs.com/AKMer/p/9946944.html 题目传送门:https://www.lydsy.com/JudgeOnline/prob ...

  8. linux 安装SSH Server + FTP Server(openssh-server + vsftp)

    openssh-server (推荐. 一般ssh,ftp 都是单独的,但是这个包含2个) 默认ubuntu 已经安装了, ssh client ,ftp client dpkg -l | grep ...

  9. android apk 防止反编译技术第二篇-运行时修改字节码

    上一篇我们讲了apk防止反编译技术中的加壳技术,如果有不明白的可以查看我的上一篇博客http://my.oschina.net/u/2323218/blog/393372.接下来我们将介绍另一种防止a ...

  10. WPF学习笔记系列之一 (布局详情)

    布局:StackPanel  栈布局:控件不会拐弯且多出的不再显示.DockPanel   停靠布局 吸在上边下边或左右.WrapPanel    环绕布局   一行控件会拐弯Canvas  进行基于 ...