5286: [Hnoi2018]转盘


Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 15  Solved: 11
[Submit][Status][Discuss]

Description


一次小G和小H准备去聚餐,但是由于太麻烦了于是题面简化如下:

一个转盘上有摆成一圈的n 个物品(编号1~n ),其中的i 个物品会在T_i时刻出现。

在0时刻时,小G可以任选n 个物品中的一个,我们将其编号为s_0​ 。并且如果i时刻选择了物品s_i ,那么i+1 时刻可以继续选择当前物品或选择下一个物品。当s_i为n 时,下一个物品为物品1 ,否则为物品s_i+1 。

在每一时刻(包括0时刻),如果小G选择的物品已经出现了,那么小G将会标记它。小H想知道,在物品选择的最优策略下,小G什么时候能标记所有物品?

但麻烦的是,物品的出现时间会不时修改。我们将其描述为m 次修改,每次修改将改变其中一个物品的出现时间。每次修改后,你也需求出当前局面的答案。对于其中部分测试点,小H还追加了强制在线的要求。

Input


第一行三个非负整数n 、m 、p ,代表一共有n 个物品,m 次修改。p 只有0或1两种取值,强制在线时p 为1,否则p 为0.

接下来一行,有n 个非负整数,第i个数T_i代表物品i的出现时间。

接下来m行,每行两个非负整数x 、y ,代表一次修改及询问。修改方式如下:

(1)如果p=0 ,则表示物品x 的出现时间T_x 修改为y 。

(2)如果p=1 ,在先将x 和y 分别异或LastAns,得到x'和y′,然后将物品x' 的出现时间T_x' 修改为y′ 。其中的LastAns 是前一个询问的结果;特别的,第一次修改时LastAns为初始局面的答案。

保证输入合法。

 

Output


第一行一个整数,代表初始局面的答案。

接下来m 行每行一个整数,分别代表每次修改后的答案。

Sample Input



Sample Output



 

HINT

 

Source

鸣谢hu1029282594上传

分析:


bzoj没有题面,自己手动整理题面好麻烦。。

题意就是: 有一个圈,找一个点作为起点,可以停顿或者往前走,每个点物品都有个出现时间,当我们到达这个点且物品存在就可以拿走他,问所有物品都被拿走需要的最少时间
 
可以根据神奇的推论:
选择一个点s,最优答案一定是停顿一会儿,之后不停歇的走完一圈。因为是圈,处理时,将Ti倍长。
 
那么答案就变成了

又因为Ti == Ti + n

所以

又由于里层循环是取max,所以答案可以变为

记录 Ai = Ti - i
 
那么答案变为了

此时只需要用线段树维护一下就好了,首先维护每段区间Ai的最大值,

然后在push时,对于i ∈[l,mid],找到最小的 i + Aj 并储存下来,这个O(logn)递归可以做到。

总复杂度O(nlogn^2 + mlogn^2)

AC代码:


# include <iostream>
# include <cstdio>
# include <cstring>
using namespace std;
const int N = 2e5 + ;
int T[N],A[N],n,m,k;
struct Seg{
int mx[N << ],mi[N << ];
int Query(int l,int r,int rt,int bac)
{
if(l == r)return l + max(mx[rt],bac);
int mid = l + r >> ;
if(mx[rt << | ] < bac)
return min(Query(l,mid,rt << ,bac),mid + + bac);
return min(mi[rt],Query(mid + ,r,rt << | ,bac));
}
void push(int l,int r,int rt)
{
mi[rt] = Query(l,l + r >> ,rt << ,mx[rt << | ]);
mx[rt] = max(mx[rt << ],mx[rt << | ]);
}
void build(int l,int r,int rt)
{
if(l == r){mx[rt] = A[l];mi[rt] = T[l];return;}
int mid = l + r >> ;
build(l,mid,rt << );
build(mid + ,r,rt << | );
push(l,r,rt);
}
void updata(int L,int l,int r,int rt)
{
if(l == r){mx[rt] = A[l];mi[rt] = T[l];return;}
int mid = l + r >> ;
if(L <= mid)updata(L,l,mid,rt << );
else updata(L,mid + ,r,rt << | );
push(l,r,rt);
}
}B;
int main()
{
scanf("%d %d %d",&n,&m,&k);
for(int i = ;i <= n;i++)
{
scanf("%d",&T[i]);T[i + n] = T[i];
A[i] = T[i] - i;A[i + n] = A[i] - n;
}
B.build(,n << ,);
int las,x,y;printf("%d\n",las = B.mi[] + n - );
while(m--)
{
scanf("%d %d",&x,&y);x ^= k * las,y ^= k * las;
T[x] = T[x + n] = y;A[x] = T[x] - x;A[x + n] = A[x] - n;
B.updata(x,,n << ,);B.updata(x + n,,n << ,);
printf("%d\n",las = B.mi[] + n - );
}
}
 

[BZOJ5286][洛谷P4425][HNOI2018]转盘(线段树)的更多相关文章

  1. BZOJ5286: [Hnoi2018]转盘 (线段树)

    题意 给你绕成一圈的物品共 \(n\) 个 , 然后从其中一个开始选 , 每次有两种操作 , 一是继续选择当前物品 , 二是选择这个后一个物品 . 选择后一个物品要求当前的时刻大于后一个的 \(T_i ...

  2. BZOJ.5286.[AHOI/HNOI2018]转盘(线段树)

    BZOJ LOJ 洛谷 如果从\(1\)开始,把每个时间\(t_i\)减去\(i\),答案取决于\(\max\{t_i-i\}\).记取得最大值的位置是\(p\),答案是\(t_p+1+n-1-p=\ ...

  3. 【BZOJ】1012: [JSOI2008]最大数maxnumber /【洛谷】1198(线段树)

    Description 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度.2. 插 ...

  4. 洛谷题解P4314CPU监控--线段树

    题目链接 https://www.luogu.org/problemnew/show/P4314 https://www.lydsy.com/JudgeOnline/problem.php?id=30 ...

  5. 洛谷P3372/poj3468(线段树lazy_tag)(询问区间和,支持区间修改)

    洛谷P3372 //线段树 询问区间和,支持区间修改 #include <cstdio> using namespace std; struct treetype { int l,r; l ...

  6. 洛谷P4065 [JXOI2017]颜色(线段树)

    题意 题目链接 Sol 线段树板子题都做不出来,真是越来越菜了.. 根据题目描述,一个合法区间等价于在区间内的颜色没有在区间外出现过. 所以我们可以对于每个右端点,统计最长的左端点在哪里,刚开始以为这 ...

  7. 洛谷P5111 zhtobu3232的线段树

    题意:给定线段树,上面若干个节点坏了,求能表示出多少区间. 区间能被表示出当且仅当拆出来的log个节点都是好的. 解:每个区间在最浅的节点处计算答案. 对于每个节点维护从左边过来能有多少区间,从右边过 ...

  8. 洛谷P3960 列队 NOIp2017 线段树/树状数组/splay

    正解:动态开点线段树 解题报告: 传送门! 因为最近学主席树的时候顺便get到了动态开点线段树?刚好想起来很久很久以前就想做结果一直麻油做的这题,,,所以就做下好了QAQ 然后说下,这题有很多种方法, ...

  9. 题解——洛谷P2781 传教(线段树)

    可以说是数据结构学傻了的典型案例了 昨天跳到这题上 然后思考了一下 噫!好!线段树裸题 然后打完板子,发现\(  n \le 10^9 \) 显然线段树直接做不太行 然后这题又只有普及的难度 然后我就 ...

随机推荐

  1. Python入门基础--字符编码与文件处理

    字符编码 文本编辑器存取文件的原理 #1.打开编辑器就打开了启动了一个进程,是在内存中的,所以,用编辑器编写的内容也都是存放与内存中的,断电后数据丢失 #2.要想永久保存,需要点击保存按钮:编辑器把内 ...

  2. 在linux下安装并运行scrapyd

    系统:centos7.4 安装scrapyd:pip isntall scrapyd 因为我腾讯云上是python2与python3并存的 所以我执行的命令是:pip3 isntall scrapyd ...

  3. 深入理解FIFO(包含有FIFO深度的解释)——转载

    深入理解FIFO(包含有FIFO深度的解释) FIFO: 一.先入先出队列(First Input First Output,FIFO)这是一种传统的按序执行方法,先进入的指令先完成并引退,跟着才执行 ...

  4. 通过SWD J-Link使用J-Link RTT Viewer来查看打印日志

    详细的说明可以参考:https://www.cnblogs.com/iini/p/9279618.html sdk版本: 15.2.0 例程目录:\nRF5_SDK_15.2.0_9412b96\ex ...

  5. phpmyadmin提示The mbstring extension is missing的解决方法

    解决办法:安装php-mbstring yum install php-mbstring

  6. ax=1(%b) 求最小逆元

    定理一:如果d = gcd(a, b),则必能找到正的或负的整数x和y,使 d = a*x+ b*y. 定理二:若gcd(a, b) = ,则方程ax ≡ c (mod b)在[, b-]上有唯一解. ...

  7. 简单配置.htaccess就可以实现的10个功能

    http://bbs.itcast.cn/thread-25990-1-1.html?xhw 1. 反盗链那些盗用了你的内容,还不愿意自己存储图片的网站是很常见的.你可以通过以下配置来放置别人盗用你的 ...

  8. selenium - js日历控件处理

    # 13. js处理日历控件 ''' 在web自动化的工程中,日历控制大约分为两种: 1. 可以直接输入日期 2. 通过日历控件选择日期 基本思路: 利用js去掉readonly属性,然后直接输入时间 ...

  9. [已解决]使用 apt-get update 命令提示 ...中被配置了多次

    报错:W: 目标 Sources (main/source/Sources) 在 /etc/apt/sources.list:2 和 /etc/apt/sources.list:7 中被配置了多次 v ...

  10. struts2和spring的两种整合方式

    首先,来看看如何让Spring 来管理Action. 在struts.xml中加入 <constant name="struts.objectFactory" value=& ...