【题解】P2602[JZOI2010]数字计数
【题解】[P2602ZJOI2010]数字计数
乍看此题,感觉直接从数字的位上面动手,感觉应该很容易。
但是仔细看数据范围,发现如果不利用计数原理,肯定会超时,考虑数码出现的特征:
\(A000\)到\(A999\),四位数中的\(A\)总共出现了\(999-0+1\)次。假设\(A\)在第\(k\)位上,那么它出现了\(10^{k-1}\)次。记录一下这个的前缀和。特别注意的是, 由\(dp(i)\rightarrow dp(i+1)\)时,要\(dp(i+1)=10dp(i)+10^{i-1}\),这是考虑到在第\(i+1\)位上增加一位会给\(i\)位带来\([0,9]\)总共10的贡献。那么\(A\)出现的次数就被我们确定了。
显然对于\(A233\)这样的数字,我们不能直接调用前面我们预处理的数组,因为它的值域是在\([233,995]\)的,而非\([000,999]\)。其实这样也好办,\(A\)出现的次数直接就是\(233-000+1=233+1\)。最后对于\(A\)特殊处理即可。
然后我们从处理四位数到了处理三位数了。就是一个一样的子问题。
#include<bits/stdc++.h>
using namespace std;
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;++t)
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;--t)
#define ERP(t,a) for(register int t=head[a];t;t=e[t].nx)
#define Max(a,b) ((a)<(b)?(b):(a))
#define Min(a,b) ((a)<(b)?(a):(b))
#define midd register int mid=(l+r)>>1
#define TMP template < class ccf >
typedef long long ll;
#define endl '\n'
#define spc ' '
#define int ll
TMP inline ccf qr(ccf b){
char c=getchar();
int q=1;
ccf x=0;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
return q==-1?-x:x;
}
const int maxn=15;
ll F,T;
int cntf,cntt;
int ans[maxn];
int ans2[maxn];
int num[maxn];
ll dp[maxn]={0,1};
ll ten[maxn]={1};
inline void dfs(int* d,ll data){
register int cnt=0;
while(data)
num[++cnt]=data%10,data/=10;
DRP(t,cnt,1){
RP(i,0,9)
d[i]+=dp[t-1]*num[t];
RP(i,0,num[t]-1)
d[i]+=ten[t-1];
register ll temp=0;
DRP(i,t-1,1)
temp=temp*10LL+num[i];
d[num[t]]+=temp+1;d[0]-=ten[t-1];
}
}
signed main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
ten[1]=10;
RP(t,2,14)
ten[t]=ten[t-1]*10ll,dp[t]=dp[t-1]*10ll+ten[t-1];
F=qr(1ll);
T=qr(1ll);
dfs(ans,T);
dfs(ans2,F-1LL);
RP(t,0,9)
cout<<ans[t]-ans2[t]<<spc;
cout<<endl;
return 0;
}
【题解】P2602[JZOI2010]数字计数的更多相关文章
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- P2602 [ZJOI2010]数字计数&P1239 计数器&P4999 烦人的数学作业
P2602 [ZJOI2010]数字计数 题解 DFS 恶心的数位DP 对于这道题,我们可以一个数字一个数字的求 也就是分别统计区间 [ L , R ] 内部数字 i 出现的次数 (0<=i&l ...
- P2602 [ZJOI2010]数字计数(递推)
P2602 [ZJOI2010]数字计数 思路: 首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的.所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数 ...
- 数位dp详解&&LG P2602 [ZJOI2010]数字计数
数位dp,适用于解决一类求x~y之间有多少个符合要求的数或者其他. 例题 题目描述 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除 ...
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- 洛谷P2602 [ZJOI2010]数字计数 题解
题目描述 输入格式 输出格式 输入输出样例 输入样例 1 99 输出样例 9 20 20 20 20 20 20 20 20 20 说明/提示 数据规模与约定 分析 很裸的一道数位DP的板子 定义f[ ...
- [洛谷P2602][ZJOI2010]数字计数
题目大意:求区间$[l,r]$中数字$0\sim9$出现个数 题解:数位$DP$ 卡点:无 C++ Code: #include <cstdio> #include <iostrea ...
- Luogu P2602 [ZJOI2010]数字计数 数位DP
很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...
- P2602 [ZJOI2010]数字计数
https://www.luogu.org/problemnew/show/P2602 数位dp #include <bits/stdc++.h> using namespace std; ...
随机推荐
- Web模糊测试工具Powerfuzzer
Web模糊测试工具Powerfuzzer Powerfuzzer是Kali Linux自带的一款Web模糊测试工具.该工具基于各种开源模糊测试工具构建,集成了大量安全信息.该工具高度智能化,它能根 ...
- Akka Stream之Graph
最近在项目中需要实现图的一些操作,因此,初步考虑使用Akka Stream的Graph实现.从而学习了下: 一.介绍 我们知道在Akka Stream中有三种简单的线性数据流操作:Source/Flo ...
- 基于Tiny4412的I2C驱动分析
本文以tiny4412平台上到三轴加速度器为例简单分析了Linux下到i2c驱动编程. http://pan.baidu.com/s/1c0H5vRq
- wireshark学习笔记
之前写过一篇博客:用 Fiddler 来调试HTTP,HTTPS. 这篇文章介绍另一个好用的抓包工具wireshark, 用来获取网络数据封包,包括http,TCP,UDP,等网络协议包. 记得大学的 ...
- DotnetBrowser入门教程-(1)浏览器控件使用
先简单介绍下DotnetBrowser作为基本浏览器控件的使用: 1.创建基于.net 4.0的桌面项目,如下所示: 2.首次使用的时候在工具栏里添加dotnetbrowser控件,如下图所示: 3. ...
- Youtube深度学习推荐系统论文
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45530.pdf https://zh ...
- 我是如何通过一个 XSS 探测搜狐内网扫描内网并且蠕动前台到最后被发现的
我是如何通过一个 XSS 探测搜狐内网扫描内网并且蠕动前台到最后被发现的!(附带各种 POC) | WooYun-2014-76685 | WooYun.orghttp://wooyun.org/bu ...
- Action window Flags
Action window 主要字段使用 含义 target 值 作用 current 当前窗口 new 新窗口 inline 内联编辑 fullscreen 全屏 main 当前窗口的主动作 ...
- GridView 获取列字段的几种途径
GridView是ASP.NET中功能强大的数据显示控件,它的RowDataBound事件为我们提供了方便的控制行.列数据的途径. 要获取当前行的某个数据列,我在实践中总结有如下几种方法: 1. Ce ...
- JavaScript 文件操作方法详解
可以通过浏览器在访问者的硬盘上创建文件,因为我开始试了一下真的可以,不信你把下面这段代码COPY到一个HTML文件当中再运行一下! <script language="JavaScri ...