BZOJ4390: [Usaco2015 dec]Max Flow

Description

Farmer John has installed a new system of N−1 pipes to transport milk between the N stalls in his barn (2≤N≤50,000), conveniently numbered 1…N. Each pipe connects a pair of stalls, and all stalls are connected to each-other via paths of pipes.

FJ is pumping milk between KK pairs of stalls (1≤K≤100,000). For the iith such pair, you are told two stalls sisi and titi, endpoints of a path along which milk is being pumped at a unit rate. FJ is concerned that some stalls might end up overwhelmed with all the milk being pumped through them, since a stall can serve as a waypoint along many of the KK paths along which milk is being pumped. Please help him determine the maximum amount of milk being pumped through any stall. If milk is being pumped along a path from sisi to titi, then it counts as being pumped through the endpoint stalls sisi and titi, as well as through every stall along the path between them.

给定一棵有N个点的树,所有节点的权值都为0。

有K次操作,每次指定两个点s,t,将s到t路径上所有点的权值都加一。

请输出K次操作完毕后权值最大的那个点的权值。

Input

The first line of the input contains NN and KK.

The next N−1 lines each contain two integers x and y (x≠y,x≠y) describing a pipe between stalls x and y.

The next K lines each contain two integers ss and t describing the endpoint stalls of a path through which milk is being pumped.

Output

An integer specifying the maximum amount of milk pumped through any stall in the barn.

Sample Input

5 10
3 4
1 5
4 2
5 4
5 4
5 4
3 5
4 3
4 3
1 3
3 5
5 4
1 5
3 4

Sample Output

9
题解Here!
解法一:
首先想到的就是 树链剖分/LCT。。。
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#define MAXN 50010
using namespace std;
int n,m,c=1,d=1;
int head[MAXN],deep[MAXN],son[MAXN],size[MAXN],fa[MAXN],id[MAXN],top[MAXN];
struct node1{
int next,to;
}a[MAXN<<1];
struct node2{
int data,c,l,r;
}b[MAXN<<2];
inline int read(){
int date=0,w=1;char c=0;
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
return date*w;
}
namespace ST{
#define LSON rt<<1
#define RSON rt<<1|1
#define DATA(x) a[x].data
#define SIGN(x) a[x].c
#define LSIDE(x) a[x].l
#define RSIDE(x) a[x].r
#define WIDTH(x) (RSIDE(x)-LSIDE(x)+1)
struct Segment{
int data,c,l,r;
}a[MAXN<<2];
inline void pushup(int rt){
DATA(rt)=max(DATA(LSON),DATA(RSON));
}
inline void pushdown(int rt){
if(!SIGN(rt)||LSIDE(rt)==RSIDE(rt))return;
SIGN(LSON)+=SIGN(rt);DATA(LSON)+=SIGN(rt);
SIGN(RSON)+=SIGN(rt);DATA(RSON)+=SIGN(rt);
SIGN(rt)=0;
}
void buildtree(int l,int r,int rt){
int mid;
LSIDE(rt)=l;
RSIDE(rt)=r;
if(l==r){
DATA(rt)=0;
return;
}
mid=l+r>>1;
buildtree(l,mid,LSON);
buildtree(mid+1,r,RSON);
pushup(rt);
}
void update(int l,int r,int c,int rt){
int mid;
if(l<=LSIDE(rt)&&RSIDE(rt)<=r){
SIGN(rt)+=c;DATA(rt)+=c;
return;
}
pushdown(rt);
mid=LSIDE(rt)+RSIDE(rt)>>1;
if(l<=mid)update(l,r,c,LSON);
if(mid<r)update(l,r,c,RSON);
pushup(rt);
}
int query(int l,int r,int rt){
int mid,ans=0;
if(l<=LSIDE(rt)&&RSIDE(rt)<=r)return DATA(rt);
pushdown(rt);
mid=LSIDE(rt)+RSIDE(rt)>>1;
if(l<=mid)ans=max(ans,query(l,r,LSON));
if(mid<r)ans=max(ans,query(l,r,RSON));
return ans;
}
void work_add(int x,int y){
while(top[x]!=top[y]){
if(deep[top[x]]<deep[top[y]])swap(x,y);
update(id[top[x]],id[x],1,1);
x=fa[top[x]];
}
if(deep[x]>deep[y])swap(x,y);
update(id[x],id[y],1,1);
return;
}
}
inline void add(int x,int y){
a[c].to=y;a[c].next=head[x];head[x]=c++;
a[c].to=x;a[c].next=head[y];head[y]=c++;
}
void dfs1(int rt){
son[rt]=0;size[rt]=1;
for(int i=head[rt];i;i=a[i].next){
int will=a[i].to;
if(!deep[will]){
deep[will]=deep[rt]+1;
fa[will]=rt;
dfs1(will);
size[rt]+=size[will];
if(size[son[rt]]<size[will])son[rt]=will;
}
}
}
void dfs2(int rt,int f){
id[rt]=d++;top[rt]=f;
if(son[rt])dfs2(son[rt],f);
for(int i=head[rt];i;i=a[i].next){
int will=a[i].to;
if(will!=fa[rt]&&will!=son[rt])
dfs2(will,will);
}
}
void work(){
int x,y;
while(m--){
x=read();y=read();
ST::work_add(x,y);
}
printf("%d\n",ST::query(1,n,1));
}
void init(){
int x,y;
n=read();m=read();
for(int i=1;i<n;i++){
x=read();y=read();
add(x,y);
}
deep[1]=1;
dfs1(1);
dfs2(1,1);
ST::buildtree(1,n,1);
}
int main(){
init();
work();
return 0;
}

总耗时3244ms。

解法二:

这题可以不用在线做,那么我们就有一个很NOIP的算法——树上差分

若操作的节点是u,v,那么只要在差分数组num[]中这样:

int lca=LCA(u,v);
num[u]++;num[v]++;
num[lca]--;num[fa[lca]]--;

最后再用一个dfs求出和:

void get_sum(int rt){
sum[rt]=num[rt];
for(int i=head[rt];i;i=a[i].next){
int will=a[i].to;
if(will==fa[rt])continue;
get_sum(will);
sum[rt]+=sum[will];
}
ans=max(ans,sum[rt]);
}

这样,sum[]数组中就是权值了。

那个LCA我不管你怎么求,反正什么倍增啊,树剖啊什么乱七八糟的玩意搞出来就行了。。。

附代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#define MAXN 50010
using namespace std;
int n,m,c=1,ans=0;
int num[MAXN],sum[MAXN],head[MAXN],deep[MAXN],son[MAXN],size[MAXN],fa[MAXN],top[MAXN];
struct node{
int next,to;
}a[MAXN<<1];
inline int read(){
int date=0,w=1;char c=0;
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
return date*w;
}
inline void add(int x,int y){
a[c].to=y;a[c].next=head[x];head[x]=c++;
a[c].to=x;a[c].next=head[y];head[y]=c++;
}
void dfs1(int rt){
son[rt]=0;size[rt]=1;
for(int i=head[rt];i;i=a[i].next){
int will=a[i].to;
if(!deep[will]){
deep[will]=deep[rt]+1;
fa[will]=rt;
dfs1(will);
size[rt]+=size[will];
if(size[son[rt]]<size[will])son[rt]=will;
}
}
}
void dfs2(int rt,int f){
top[rt]=f;
if(son[rt])dfs2(son[rt],f);
for(int i=head[rt];i;i=a[i].next){
int will=a[i].to;
if(will!=fa[rt]&&will!=son[rt])
dfs2(will,will);
}
}
int LCA(int x,int y){
while(top[x]!=top[y]){
if(deep[top[x]]<deep[top[y]])swap(x,y);
x=fa[top[x]];
}
if(deep[x]>deep[y])swap(x,y);
return x;
}
void get_sum(int rt){
sum[rt]=num[rt];
for(int i=head[rt];i;i=a[i].next){
int will=a[i].to;
if(will==fa[rt])continue;
get_sum(will);
sum[rt]+=sum[will];
}
ans=max(ans,sum[rt]);
}
void work(){
int x,y;
while(m--){
x=read();y=read();
int lca=LCA(x,y);
num[x]++;num[y]++;num[lca]--;num[fa[lca]]--;
}
get_sum(1);
printf("%d\n",ans);
}
void init(){
int x,y;
n=read();m=read();
for(int i=1;i<n;i++){
x=read();y=read();
add(x,y);
}
deep[1]=1;
dfs1(1);
dfs2(1,1);
}
int main(){
init();
work();
return 0;
}

总耗时:780ms

由此,我们可以看到,树上差分的速度几乎是树剖的4倍!

在NOIP这种严重卡常的比赛中,不到万不得已,不要用两个log的算法。。。

BZOJ4390: [Usaco2015 dec]Max Flow的更多相关文章

  1. bzoj4390: [Usaco2015 dec]Max Flow(LCA+树上差分)

    题目大意:给出一棵树,n(n<=5w)个节点,k(k<=10w)次修改,每次给定s和t,把s到t的路径上的点权+1,问k次操作后最大点权. 对于每次修改,给s和t的点权+1,给lca(s, ...

  2. BZOJ 4390: [Usaco2015 dec]Max Flow

    4390: [Usaco2015 dec]Max Flow Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 113[Submi ...

  3. [Usaco2015 dec]Max Flow 树上差分

    [Usaco2015 dec]Max Flow Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 353  Solved: 236[Submit][Sta ...

  4. 【bzoj4390】[Usaco2015 dec]Max Flow LCA

    题目描述 Farmer John has installed a new system of N−1 pipes to transport milk between the N stalls in h ...

  5. [Usaco2015 dec]Max Flow

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 204  Solved: 129[Submit][Status][Discuss] Descriptio ...

  6. 【BZOJ4391】[Usaco2015 dec]High Card Low Card(贪心)

    [BZOJ4391][Usaco2015 dec]High Card Low Card(贪心) 题面 BZOJ 题解 预处理前缀后缀的结果,中间找个地方合并就好了. #include<iostr ...

  7. bzoj4393: [Usaco2015 Dec]Fruit Feast

    题意: T,A,B.T是上限.A和B可以随意吃但是不能超过T.有一次将吃的东西/2的机会.然后可以继续吃,不能超过T.问最多可以吃多少. =>我们先处理不能/2可以吃到哪些.然后弄个双指针扫一扫 ...

  8. USACO Max Flow

    洛谷 P3128 [USACO15DEC]最大流Max Flow 洛谷传送门 JDOJ 3027: USACO 2015 Dec Platinum 1.Max Flow JDOJ传送门 Descrip ...

  9. 洛谷P3128 [USACO15DEC]最大流Max Flow [树链剖分]

    题目描述 Farmer John has installed a new system of  pipes to transport milk between the  stalls in his b ...

随机推荐

  1. ural 1519 fomular 1 既插头DP学习笔记

    直接看CDQ在2008年的论文吧. 个人认为她的论文有两个不明确的地方, 这里补充一下: 首先是轮廓的概念. 我们在进行插头DP时, 是从上往下, 从左往右逐个格子进行的, 已经处理的格子与未经处理的 ...

  2. Meet Dgraph — an open source, scalable, distributed, highly available and fast graph databas

    https://dgraph.io/ Meet Dgraph — an open source, scalable, distributed, highly available and fast gr ...

  3. RequireJS解决代码依赖问题,异步加载js,避免页面失去相应

    RequireJS的目标是鼓励代码的模块化,它使用了不同于传统<script>标签的脚本加载步骤.可以用它来加速.优化代码,但其主要目的还是为了代码的模块化.它鼓励在使用脚本时以modul ...

  4. SVN的Status字段含义

    执行SVN up和svn merge等命令出现在首位置的各字母含义如下: “ ” 无修改 “A” 新增 “C” 冲突 “D” 删除 “G” 合并 “I” 忽略 “M” 改变 “R” 替换 “X” 未纳 ...

  5. DotnetBrowser入门教程-(3)启动与使用简单的WebSocket服务

    websocket是个很好的通信协议,基本可以贯穿支持html5的所有设备.dotnetbrowser内置了对websocket服务端与客户端的支持.请看例子: 1.新建桌面项目,基于.net 4.0 ...

  6. Linux学习之十一-Linux字符集及乱码处理

    Linux字符集及乱码处理 1.字符(Character)是各种文字和符号的总称,包括各国家文字.标点符号.图形符号.数字等.字符集(Character set)是多个字符的集合,字符集种类较多,每个 ...

  7. 【2048小游戏】——原生js爬坑之封装行的移动算法&事件

    引言:2048小游戏的核心玩法是移动行,包括横行和纵行,玩家可以选择4个方向,然后所有行内的数字就会随着行的移动而向特定的方向移动.这个行的移动是一个需要重复调用的算法,所以这里就要将一行的移动算法封 ...

  8. Mysql 性能监控及调优

    死锁概念: 两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象 1.监控死锁(innotop): (1) 启用 innodb_status_file 在/etc/my.cnf添加如 ...

  9. HBase1.0以上版本号的API改变

    HBase1.0以上版本号已经废弃了 HTableInterface,HTable,HBaseAdmin等API的使用.新增了一些API来实现之前的功能: Connectioninterface: C ...

  10. OCP-1Z0-051-题目解析-第16题

    16. Evaluate the following query: SQL> SELECT promo_name q'{'s start date was }' promo_begin_date ...