斯坦纳树

比之前要求高了一些

其实利用斯坦纳树的dp[i][s]以i为根,S为状态就行了,先跑一遍斯坦纳树,预处理出dp数组,记住每个S的最小值,然后再dp,这里dp必须要求同一种颜色的状态都必须在S里,然后跑枚举子集就行了

#include<bits/stdc++.h>
using namespace std;
const int N = , inf = 0x3f3f3f3f;
struct edge {
int nxt, to, w;
} e[N * ];
struct points {
int x, c;
} a[N];
int n, m, p, cnt = ;
int head[N], sum[], vis[N], ans[ << ], dp[N][ << ], tmp[];
bool check(int S)
{
memset(tmp, , sizeof(tmp));
for(int i = ; i < p; ++i) if(S >> i & ) ++tmp[a[i].c];
for(int i = ; i <= p; ++i) if(tmp[i] && sum[i] != tmp[i]) return false;
return true;
}
void link(int u, int v, int w)
{
e[++cnt].nxt = head[u];
head[u] = cnt;
e[cnt].to = v;
e[cnt].w = w;
}
int main()
{
scanf("%d%d%d", &n, &m, &p);
for(int i = ; i <= m; ++i)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
link(u, v, w);
link(v, u, w);
}
memset(dp, 0x3f3f, sizeof(dp));
for(int i = ; i < p; ++i)
{
scanf("%d%d", &a[i].c, &a[i].x);
dp[a[i].x][ << i] = ;
++sum[a[i].c];
}
for(int S = ; S < ( << p); ++S)
{
queue<int> q;
for(int i = ; i <= n; ++i)
{
for(int S0 = S; S0; S0 = (S0 - ) & S)
dp[i][S] = min(dp[i][S], dp[i][S ^ S0] + dp[i][S0]);
if(dp[i][S] < inf)
{
vis[i] = ;
q.push(i);
}
}
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = ;
for(int i = head[u]; i; i = e[i].nxt) if(dp[u][S] + e[i].w < dp[e[i].to][S])
{
dp[e[i].to][S] = dp[u][S] + e[i].w;
if(!vis[e[i].to])
{
vis[e[i].to] = ;
q.push(e[i].to);
}
}
}
ans[S] = inf;
for(int i = ; i <= n; ++i) ans[S] = min(ans[S], dp[i][S]);
}
for(int i = ; i < ( << p); ++i)
if(check(i))
for(int S = i; S; S = (S - ) & i)
if(check(S))
ans[i] = min(ans[i], ans[i ^ S] + ans[S]);
printf("%d\n", ans[( << p) - ]);
return ;
}

bzoj4006的更多相关文章

  1. [bzoj4006][JLOI2015]管道连接_斯坦纳树_状压dp

    管道连接 bzoj-4006 JLOI-2015 题目大意:给定一张$n$个节点$m$条边的带边权无向图.并且给定$p$个重要节点,每个重要节点都有一个颜色.求一个边权和最小的边集使得颜色相同的重要节 ...

  2. BZOJ4006 [JLOI2015]管道连接

    裸的状压DP 令$f_S$表示包含颜色集合S的最小斯坦纳生成森林的值,于是有: $$f_S=\min\{f_S,f_s+f_{S-s}|s\subset S\}$$ 然后嘛...还是裸的斯坦纳树搞搞. ...

  3. BZOJ4006 JLOI2015 管道连接(斯坦纳树生成森林)

    4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MB Description 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的 ...

  4. BZOJ4006: [JLOI2015]管道连接(斯坦纳树,状压DP)

    Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1171  Solved: 639[Submit][Status][Discuss] Descripti ...

  5. 【BZOJ4006】管道连接(动态规划,斯坦纳树)

    题面 BZOJ 洛谷 题解 和这题区别不是很大吧. 基本上拿过来改一下就做完了. #include<iostream> #include<cstdio> #include< ...

  6. 【BZOJ4006】【JLOI2015】管道连接

    Description 传送门 Solution 题目要求相同颜色的点必须在一个连通块中,但会有多个颜色同属一个连通块使得解更优的情况. 想一想DP能否行得通:设\(g_i\)表示已考虑颜色状态为\( ...

  7. 【bzoj4006】[JLOI2015]管道连接 斯坦纳树+状压dp

    题目描述 给出一张 $n$ 个点 $m$ 条边的无向图和 $p$ 个特殊点,每个特殊点有一个颜色.要求选出若干条边,使得颜色相同的特殊点在同一个连通块内.输出最小边权和. 输入 第一行包含三个整数 n ...

  8. [BZOJ4006][JLOI2015]管道连接 状压dp+斯坦纳树

    4006: [JLOI2015]管道连接 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1020  Solved: 552[Submit][Statu ...

  9. 【bzoj4006】[JLOI2015]管道连接(斯坦纳树+dp)

    题目链接 题意: 给出\(n\)个点,\(m\)条边,同时给出\(p\)个重要的点以及对应特征. 现在要选出一些边,问使得这\(p\)个所有特征相同的点相连,问最小代价. 思路: 斯坦纳树的应用场景一 ...

随机推荐

  1. 小白学phoneGap《构建跨平台APP:phoneGap移动应用实战》连载一(PhoneGap中的API)

    之前本博连载过<构建跨平台APP:jQuery Mobile移动应用实战>一书.深受移动开发入门人员的喜爱. 从如今開始,连载它的孪生姐妹书phoneGap移动应用实战一书,希望以前是小白 ...

  2. 浅析嵌入式C优化技巧

    嵌入式C语言优化小技巧 1 概述 嵌入式系统是指完毕一种或几种特定功能的计算机系统,具有自己主动化程度高,响应速度快等长处,眼下已广泛应用于消费电子,工业控制等领域.嵌入式系统受其使用的硬件以及运行环 ...

  3. 使用kubernetes 官网工具kubeadm部署kubernetes(使用阿里云镜像)

    系列目录 kubernetes简介 Kubernetes节点架构图: kubernetes组件架构图: 准备基础环境 我们将使用kubeadm部署3个节点的 Kubernetes Cluster,整体 ...

  4. paxos算法之粗浅理解

    paxos出身 paxos出身名门,它爹是没多久前获得图灵奖的在分布式领域大名鼎鼎的LeslieLamport. paxos为何而生 那么Lamport他老人家为什么要搞这个东东呢,不是吃饱了撑的,而 ...

  5. websotrom 2016.2 license Server

    license server” 输入:http://114.215.133.70:41017 仅供学习测试使用,支持正版.

  6. Android版App的控件元素定位

    前言 如何获取页面上各控件元素,无论是Web自动化还是App自动化,此步骤都是非常关键的! Web页面的控件元素可通过开发者选项(Chrome浏览器的F12)来协助定位,App端也是有相应的工具来协助 ...

  7. ffmpeg编码常见问题排查方法

    播放问题排查: 一旦我们遇到视频播放不了,第一件事,就是要找几个别的播放器也播放看看,做一下对比测试,或者对码流做一些基础分析,以便更好的定位问题的源头,而各个平台比较常见的播放/分析工具有如下几个: ...

  8. spawn类参数command详解

    我们主要来看spawn类它的构造方法参数主要有command,从字面上就是指spawn类的子程序用来执行的子程序,也就是系统所能够执行的相应的命令,对于command这个参数,我们是以字符串的方式给出 ...

  9. 开发指南专题十一:JEECG微云高速开发平台--基础用户权限

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/zhangdaiscott/article/details/26580037     开发指南专题 ...

  10. sap人员编制

    [转]中小SAP项目中的人员编制 转自http://w39.itpub.net/post/24/398817   对于SAP项目来说,常有人把项目所需的人员说的很多--每个模块一个内部顾问和一个开发的 ...