欧拉函数之和(51nod 1239)
输入一个数N。(2 <= N <= 10^10)
输出S(n) Mod 1000000007的结果。
5
10
#include<cstdio>
#include<iostream>
#define N 2000010
#define ha 2333333
#define mod 1000000007
#define ni 500000004
#define lon unsigned long long
using namespace std;
int phi[N],prime[N],cnt,tot,head[N],vis[N];
lon n,sum[N];
struct node{int pre;lon x,v;}e[N];
void add(int u,lon v,lon x){
e[++cnt].v=v;e[cnt].x=x;e[cnt].pre=head[u];head[u]=cnt;
}
void get_prime(){
phi[]=;
for(int i=;i<N;i++){
if(!vis[i]) vis[i]=,prime[++tot]=i,phi[i]=i-;
for(int j=;j<=tot&&i*prime[j]<N;j++){
vis[i*prime[j]]=;
phi[i*prime[j]]=phi[i]*(prime[j]-);
if(i%prime[j]==){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}
for(int i=;i<N;i++) sum[i]=(sum[i-]+phi[i])%mod;
}
lon solve(lon x){
if(x<N) return sum[x];
lon ans=,k=x%ha,last;
for(int i=head[k];i;i=e[i].pre)
if(e[i].v==x) return e[i].x;
for(lon i=;i<=x;i=last+){
last=x/(x/i);
ans=(ans+(last-i+)%mod*solve(x/i)%mod)%mod;
}
ans=((x%mod*(x+)%mod)%mod*ni%mod-ans+mod)%mod;
add(k,x,ans);
return ans;
}
int main(){
get_prime();
cin>>n;
cout<<solve(n);
return ;
}
欧拉函数之和(51nod 1239)的更多相关文章
- [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)
[51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1Nμ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...
- 51 NOD 1239 欧拉函数之和(杜教筛)
1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...
- 51nod1239 欧拉函数之和
跟1244差不多. //由于(x+1)没有先mod一下一直WA三个点我... //由于(x+1)没有先mod一下一直WA三个点我... #include<cstdio> #include& ...
- 51nod 1239 欧拉函数之和(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...
- 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛
题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...
- 【51Nod 1239】欧拉函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 还是模板题. 杜教筛:\[S(n)=\frac{n(n+1)}{2 ...
- 【51nod】1239 欧拉函数之和 杜教筛
[题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...
- 【51nod】1239 欧拉函数之和
题解 写完上一道就开始写这个,大体上就是代码改了改而已= = 好吧,再推一下式子! \(\sum_{i = 1}^{n}i = \sum_{i = 1}^{n}\sum_{d | i}\phi(d) ...
- 51nod 1239 欧拉函数之和【欧拉函数+杜教筛】
和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...
随机推荐
- springboot超详细笔记
一.Spring Boot 入门 1.Spring Boot 简介 简化Spring应用开发的一个框架: 整个Spring技术栈的一个大整合: J2EE开发的一站式解决方案: 2.微服务 2014,m ...
- 解读express框架
#解读Express 框架 1. package.json文件:express工程的配置文件 2. 为什么可以执行npm start?相当于执行 node ./bin/www "script ...
- c++作业:输入两个整数,用函数求两数之和。函数外部声明有什么作用?
#include <iostream> using namespace std; int main(){ //求两数的和? int a,b,s; cout<<"请你输 ...
- vue 正则判断
value=value.replace(/[^\d.]/g,'').replace(/\.{2,}/g,'.').replace('.','$#$').replace(/\./g,'').replac ...
- redis学习笔记(1)
最近在学习redis,做了比较详细的学习笔记,分享给大家,欢迎一起讨论和学习 第一部分,简单介绍redis 和 redis的基本操作 NoSQL的特点 : 数据库种类繁多,但是一个共同的特点都是去掉关 ...
- Linux菜鸟起飞之路【五】权限管理(一)
一.与用户相关的几个文件 1./etc/passwd 储存用户名,格式为 用户名:密码(用密码代位符X代替):UID:GID:用户描述信息:家目录:shell 用户名(login_name):是代表用 ...
- 基于Centos7.2搭建Cobbler自动化批量部署操作系统服务
1 Cobbler服务器端系统环境配置 1.1 系统基本环境准备 [root@cobbler-server ~]# cat /etc/redhat-release CentOS L ...
- 常用排序算法的总结以及编码(Java实现)
常用排序算法的总结以及编码(Java实现) 本篇主要是总结了常用算法的思路以及相应的编码实现,供复习的时候使用.如果需要深入进行学习,可以使用以下两个网站: GeeksForGeeks网站用于学习相应 ...
- Eclipse设置C++自动补全变量名快捷键
用快捷键:Alt+/ 要是还是有些场合不能提示,按照下列步骤 Window-Preferences-c/c++-Editor-Content Assist-Advanced 将未勾选的全部勾选
- 牛客网 Wannafly挑战赛21 灯塔
Z市是一座港口城市,来来往往的船只依靠灯塔指引方向.在海平面上,存在n个灯塔.每个灯塔可以照亮以它的中心点为中心的90°范围.特別地, 由于特殊限制,每个灯塔照亮范围的角的两条边必须要么与坐标轴平行要 ...