Sollin算法可以看作是Kruskal算法和Prim算法的综合

基本思想是:

1. 从所有节点都孤立的森林开始,通过合并树来得到最小生成树

2. 每次合并树的边都是用最小权重的割边





程序具体实现思路:

初始化,update所有点(update函数只在开始处使用一次,以后就不用了)(update的具体操作类似于prim算法里的update)

循环一:找最小割边(FindMin)

循环二:1.根据每棵树都的最小割边进行合并

2.V[gen]中删除S[gen_other]中的所有元素

3.S[gen]中增加S[gen_other]中的所有元素

4.更新d值,在V[gen]中比较d[gen][i]和d[gen_other][i],取小值



和prim算法相比,这里的V和S都是有维度的,还有d也从一维变成了二维,增加的维度是对每棵树的标示





我用C++实现的Sollin算法源程序如下:

(1)common.h 主要是程序的头文件

(2)sollin.cpp 图的创建和算法启动点

(3)resources.h 图类、边类、点类,其中图类中包含了整个程序的核心部分

(1)common.h

#define _COMMON_H_
#include <map>
#include <vector>
#include <list>
#include <set>
#include <cstdio>
using namespace std;
#include <iostream>
#include <stdio.h>
#include <algorithm>
#define INF 10000
#define N 5
#endif

(2)sollin.cpp

#include "resources.h"

CEdge::CEdge(int a, int b, int c, int d){
tail=a;
head=b;
weight=c;
capacity=d;
} CEdge::CEdge(int a, int b, int c){
head=b;
tail=a;
weight=c;
} CEdge::CEdge(CEdge & x){
tail=x.getTail();
head=x.getHead();
weight=x.getWeight();
capacity=x.getCap();
} CGraph::CGraph(list<CEdge*> listEdge){
IncidentList=listEdge;
numVertex=N;
numEdge=listEdge.size();
} void main()
{
list<CEdge*> listEdge; CEdge* e1= new CEdge(1,2,35,10);
CEdge* e2= new CEdge(1,3,40,10);
CEdge* e3= new CEdge(2,3,25,10);
CEdge* e4= new CEdge(2,4,10,10);
CEdge* e5= new CEdge(3,4,20,10);
CEdge* e6= new CEdge(3,5,15,10);
CEdge* e7= new CEdge(4,5,30,10); CEdge* e8= new CEdge(2,1,35,10);
CEdge* e9= new CEdge(3,1,40,10);
CEdge* e10= new CEdge(3,2,25,10);
CEdge* e11= new CEdge(4,2,10,10);
CEdge* e12= new CEdge(4,3,20,10);
CEdge* e13= new CEdge(5,3,15,10);
CEdge* e14= new CEdge(5,4,30,10); listEdge.push_back(e1);
listEdge.push_back(e2);
listEdge.push_back(e3);
listEdge.push_back(e4);
listEdge.push_back(e5);
listEdge.push_back(e6);
listEdge.push_back(e7); listEdge.push_back(e8);
listEdge.push_back(e9);
listEdge.push_back(e10);
listEdge.push_back(e11);
listEdge.push_back(e12);
listEdge.push_back(e13);
listEdge.push_back(e14); CGraph g(listEdge);
g.p3();
g.p4();
g.solin();
getchar();
}

(3)resources.h

#include "common.h"

int set1[110]={0};

int FindSet(int x)
{
if(x==set1[x])
return x;
else
return set1[x]=FindSet(set1[x]);
} void UnionSet(int x, int y)
{
int fx=FindSet(x);
int fy=FindSet(y);
set1[fy]=fx;
} class CEdge{
private:
int tail, head;
int weight, capacity;
public:
CEdge(int a, int b, int c, int d);
CEdge(int a, int b, int c);
CEdge(CEdge &x);
int getHead(){return head;}
int getTail(){return tail;}
int getWeight(){return weight;}
int getCap(){return capacity;} }; bool cmp(CEdge* a, CEdge* b)
{
if(a->getWeight()<b->getWeight())
return 1;
else
return 0;
} class CGraph{
private:
int numVertex;
int numEdge;
list<CEdge*> IncidentList;
public:
CGraph(char* inputFile);
CGraph(list<CEdge*> listEdge);
CGraph(CGraph &);
map<int,list<CEdge*>> nelist;
vector<vector<CEdge*>> adjmatrix;
int d[N+10][N+10];
set<int> S[N+10];//被永久标记的点集
set<int> V[N+10];//初始点集 int getNumVertex(){
return numVertex;
}
int getNumEdge(){
return numEdge;
}
void p3(){
list<CEdge*>::iterator it,iend;
iend=IncidentList.end();
CEdge* emptyedge=new CEdge(-1,-1,-1,-1);
for(int i=0;i<=numVertex;i++)
{
vector<CEdge*> vec;
for(int j=0;j<=numVertex;j++)
{
vec.push_back(emptyedge);
}
adjmatrix.push_back(vec);
}
for(it=IncidentList.begin();it!=iend;it++){
adjmatrix[(*it)->getTail()][(*it)->getHead()] = *it ; }
} void p4(){
list<CEdge*>::iterator it,iend;
iend=IncidentList.end(); for(it=IncidentList.begin();it!=iend;it++)
nelist[(*it)->getTail()].push_back(*it); list<CEdge*>::iterator it2,iend2;
iend2=nelist[3].end();
} void Update(int k, int i){
list<CEdge*>::iterator it,iend;
it=nelist[i].begin();
iend=nelist[i].end();
for(;it!=iend;it++)
if((*it)->getWeight()<d[k][(*it)->getHead()]){
d[k][(*it)->getHead()]=(*it)->getWeight();
}
} int FindMin(int k){
set<int>::iterator vi,vend;
vend=V[k].end();
int mini=10000000;
int loc=0;
for(vi=V[k].begin();vi!=vend;vi++)
if(mini>=d[k][*vi])
{mini=d[k][*vi];loc=*vi;}
return loc;
} void solin(){
printf("sollin:\n");
for(int i=1;i<=N;i++)
set1[i]=i;
list<CEdge*> T;
int e[N+10];
//初始化操作
int j,k;
for(k=1;k<=N;k++)
for(j=1;j<=N;j++){
V[k].insert(j);
d[k][j]=INF;
} for(k=1;k<=N;k++){
S[k].insert(k);
V[k].erase(k);
d[k][k]=0;
Update(k,k);
} while(T.size()<(N-1))
{
for(int i=1;i<=N;i++)
{
if(i!=FindSet(i)) continue;
e[i]=FindMin(i);
}//1 for 查找N(k)与V–N(k)之间的最小割边 for(int i=1;i<=N;i++)
{
if(i!=FindSet(i)) continue;
if(FindSet(e[i])!=FindSet(i))
{
UnionSet(e[i],i);//合并树
//V[gen]中删除S[gen_other]中的所有元素
//S[gen]中增加S[gen_other]中的所有元素
int gen,gen_other;
gen=FindSet(i);
if(gen==i) gen_other=e[i];
else gen_other=i;
set<int>::iterator it,iend;
iend=S[gen_other].end();
for(it=S[gen_other].begin();it!=iend;it++){
V[gen].erase(*it);
S[gen].insert(*it);
}
//更新d值,在V[gen]中比较d[gen][i]和d[gen_other][i],取小值
iend=V[gen].end();
for(it=V[gen].begin();it!=iend;it++)
if(d[gen][*it]>d[gen_other][*it])
d[gen][*it]=d[gen_other][*it];
T.push_back(adjmatrix[e[i]][i]);
printf("%d---%d\n",e[i],i);
}
}//2 for 合并两棵树
}//while循环
}//sollin算法
};//graph类

Sollin算法的C++实现 BY gremount的更多相关文章

  1. Borůvka (Sollin) 算法求 MST 最小生成树

    基本思路: 用定点数组记录每个子树的最近邻居. 对于每一条边进行处理: 如果这条边连成的两个顶点同属于一个集合,则不处理,否则检测这条边连接的两个子树,如果是连接这两个子树的最小边,则更新 (合并). ...

  2. ACM主要算法

    ACM主要算法ACM主要算法介绍 初期篇 一.基本算法(1)枚举(poj1753, poj2965)(2)贪心(poj1328, poj2109, poj2586)(3)递归和分治法(4)递推(5)构 ...

  3. ACM常用算法

    数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 一维线段树 二维 ...

  4. ACM需要掌握算法

    数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 一维线段树 二维 ...

  5. ACM用到的算法。先做个笔记,记一下

    ACM 所有算法 数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 ...

  6. ACM算法目录

    数据结构 栈,队列,链表 •哈希表,哈希数组 •堆,优先队列 双端队列 可并堆 左偏堆 •二叉查找树 Treap 伸展树 •并查集 集合计数问题 二分图的识别 •平衡二叉树 •二叉排序树 •线段树 一 ...

  7. ACM技能表

    看看就好了(滑稽) 数据结构 栈 栈 单调栈 队列 一般队列 优先队列/单调队列 循环队列 双端队列 链表 一般链表 循环链表 双向链表 块状链表 十字链表 邻接表/邻接矩阵 邻接表 邻接多重表 Ha ...

  8. Radix Heap ---Dijkstra算法的优化 BY Gremount

    Radix Heap 算法是在Dijkstra的Dial实现的基础上,通过减少对桶的使用,来优化算法的时间复杂度: Dial 时间复杂度是O(m+nC)     -------C是最长的链路 Radi ...

  9. ACM算法整理(不断补充ing)

    动态规划 1.背包问题 (1)01背包 ,n) DFR(v,V,C[i]) F[v]=max(F[v],F[v-C[i]]+W[i]); } //初始化时 //若背包不一定装满F全初始化为0 //若装 ...

随机推荐

  1. 6.JUC之ReentrantReadWriteLock

    一.概述: Java纪年1.5年,ReentrantReadWriteLock诞生于JUC,此后,国人一般称它为读写锁.人如其名,他就是一个可重入锁,同时他还是一个读写锁 a)跟ReentrantLo ...

  2. outlook配置其他邮箱登录如qq邮箱或登录无邮件信息记录

    今天加班想想自己outlook还没登登录过,于是想着登录一下outlook方便管理邮箱信息,才发现原来登录邮箱都要配置,感觉真是醉了.下面开始正式的配置流程. 选择添加账户 首先,点击文件选择账户设置 ...

  3. Hive调优笔记

    Hive调优 先记录了这么多,日后如果有遇到,再补充. fetch模式 <property> <name>hive.fetch.task.conversion</name ...

  4. Python面向对象Day2

    一.组合 给一个类的对象分组一个属性,这个属性是另一个类的对象 意义:让类的对象与另一个类的对象产生关系,也叫类与类之间产生关系(继承也能) 好处: ① 让两个类之间产生关系 ② 某一个对象是独立存在 ...

  5. 解析CentOS 7中系统文件与目录管理

    Linux目录结构 Linux目录结构是树形的目录结构 根目录 所有分区.目录.文件等的位置起点 整个树形目录结构中,使用独立的一个"/"表示 常见的子目录 目录 目录名称 目录 ...

  6. Flask笔记(一)

    first_flask_project.py # 从flask这个包中导入Flask这个类 # Flask这个类是项目的核心,以后很多操作都是基于这个类的对象 # 注册url.注册蓝图等都是基于这个类 ...

  7. Linux网络编程综合运用之MiniFtp实现(八)

    上节中实现了"USER"和"PASS"命令,如下: 事实上FTP是有很多命令组成的,如果就采用上面的这种方法来实现的话,就会有很多if...else if语句, ...

  8. Entity Framework的一个坑

    由于业务需要写了一个批量数据导入工具.中间踩了一个坑 问: 1. SaveChange 实体A 发生pk冲突,异常了.2.记录日志3.不让退出程序,继续处理下一个实体4.Add新的实体B5.再次调用S ...

  9. [MVC] 自定义ActionSelector,根据参数选择Action[转载]

    很多时候我们会根据UI传入的参数,呈现不同的View.也就是对于同一个Action如何根据请求数据返回不同的View.通常情况下我们会按照如下方法来写,例如: [AcceptVerbs(HttpVer ...

  10. 1203 forms组件

    目录 昨日内容 多对多三种创建方式 1.全自动 好处 缺点 2.纯手动 好处 缺点 3.半自动through='',through_fields=(外键字段) 好处 缺点 forms组件 1.简单引入 ...