Sollin算法的C++实现 BY gremount
Sollin算法可以看作是Kruskal算法和Prim算法的综合
基本思想是:
1. 从所有节点都孤立的森林开始,通过合并树来得到最小生成树
2. 每次合并树的边都是用最小权重的割边
程序具体实现思路:
初始化,update所有点(update函数只在开始处使用一次,以后就不用了)(update的具体操作类似于prim算法里的update)
循环一:找最小割边(FindMin)
循环二:1.根据每棵树都的最小割边进行合并
2.V[gen]中删除S[gen_other]中的所有元素
3.S[gen]中增加S[gen_other]中的所有元素
4.更新d值,在V[gen]中比较d[gen][i]和d[gen_other][i],取小值
和prim算法相比,这里的V和S都是有维度的,还有d也从一维变成了二维,增加的维度是对每棵树的标示
我用C++实现的Sollin算法源程序如下:
(1)common.h 主要是程序的头文件
(2)sollin.cpp 图的创建和算法启动点
(3)resources.h 图类、边类、点类,其中图类中包含了整个程序的核心部分
(1)common.h
#define _COMMON_H_
#include <map>
#include <vector>
#include <list>
#include <set>
#include <cstdio>
using namespace std;
#include <iostream>
#include <stdio.h>
#include <algorithm>
#define INF 10000
#define N 5
#endif
(2)sollin.cpp
#include "resources.h" CEdge::CEdge(int a, int b, int c, int d){
tail=a;
head=b;
weight=c;
capacity=d;
} CEdge::CEdge(int a, int b, int c){
head=b;
tail=a;
weight=c;
} CEdge::CEdge(CEdge & x){
tail=x.getTail();
head=x.getHead();
weight=x.getWeight();
capacity=x.getCap();
} CGraph::CGraph(list<CEdge*> listEdge){
IncidentList=listEdge;
numVertex=N;
numEdge=listEdge.size();
} void main()
{
list<CEdge*> listEdge; CEdge* e1= new CEdge(1,2,35,10);
CEdge* e2= new CEdge(1,3,40,10);
CEdge* e3= new CEdge(2,3,25,10);
CEdge* e4= new CEdge(2,4,10,10);
CEdge* e5= new CEdge(3,4,20,10);
CEdge* e6= new CEdge(3,5,15,10);
CEdge* e7= new CEdge(4,5,30,10); CEdge* e8= new CEdge(2,1,35,10);
CEdge* e9= new CEdge(3,1,40,10);
CEdge* e10= new CEdge(3,2,25,10);
CEdge* e11= new CEdge(4,2,10,10);
CEdge* e12= new CEdge(4,3,20,10);
CEdge* e13= new CEdge(5,3,15,10);
CEdge* e14= new CEdge(5,4,30,10); listEdge.push_back(e1);
listEdge.push_back(e2);
listEdge.push_back(e3);
listEdge.push_back(e4);
listEdge.push_back(e5);
listEdge.push_back(e6);
listEdge.push_back(e7); listEdge.push_back(e8);
listEdge.push_back(e9);
listEdge.push_back(e10);
listEdge.push_back(e11);
listEdge.push_back(e12);
listEdge.push_back(e13);
listEdge.push_back(e14); CGraph g(listEdge);
g.p3();
g.p4();
g.solin();
getchar();
}
(3)resources.h
#include "common.h" int set1[110]={0}; int FindSet(int x)
{
if(x==set1[x])
return x;
else
return set1[x]=FindSet(set1[x]);
} void UnionSet(int x, int y)
{
int fx=FindSet(x);
int fy=FindSet(y);
set1[fy]=fx;
} class CEdge{
private:
int tail, head;
int weight, capacity;
public:
CEdge(int a, int b, int c, int d);
CEdge(int a, int b, int c);
CEdge(CEdge &x);
int getHead(){return head;}
int getTail(){return tail;}
int getWeight(){return weight;}
int getCap(){return capacity;} }; bool cmp(CEdge* a, CEdge* b)
{
if(a->getWeight()<b->getWeight())
return 1;
else
return 0;
} class CGraph{
private:
int numVertex;
int numEdge;
list<CEdge*> IncidentList;
public:
CGraph(char* inputFile);
CGraph(list<CEdge*> listEdge);
CGraph(CGraph &);
map<int,list<CEdge*>> nelist;
vector<vector<CEdge*>> adjmatrix;
int d[N+10][N+10];
set<int> S[N+10];//被永久标记的点集
set<int> V[N+10];//初始点集 int getNumVertex(){
return numVertex;
}
int getNumEdge(){
return numEdge;
}
void p3(){
list<CEdge*>::iterator it,iend;
iend=IncidentList.end();
CEdge* emptyedge=new CEdge(-1,-1,-1,-1);
for(int i=0;i<=numVertex;i++)
{
vector<CEdge*> vec;
for(int j=0;j<=numVertex;j++)
{
vec.push_back(emptyedge);
}
adjmatrix.push_back(vec);
}
for(it=IncidentList.begin();it!=iend;it++){
adjmatrix[(*it)->getTail()][(*it)->getHead()] = *it ; }
} void p4(){
list<CEdge*>::iterator it,iend;
iend=IncidentList.end(); for(it=IncidentList.begin();it!=iend;it++)
nelist[(*it)->getTail()].push_back(*it); list<CEdge*>::iterator it2,iend2;
iend2=nelist[3].end();
} void Update(int k, int i){
list<CEdge*>::iterator it,iend;
it=nelist[i].begin();
iend=nelist[i].end();
for(;it!=iend;it++)
if((*it)->getWeight()<d[k][(*it)->getHead()]){
d[k][(*it)->getHead()]=(*it)->getWeight();
}
} int FindMin(int k){
set<int>::iterator vi,vend;
vend=V[k].end();
int mini=10000000;
int loc=0;
for(vi=V[k].begin();vi!=vend;vi++)
if(mini>=d[k][*vi])
{mini=d[k][*vi];loc=*vi;}
return loc;
} void solin(){
printf("sollin:\n");
for(int i=1;i<=N;i++)
set1[i]=i;
list<CEdge*> T;
int e[N+10];
//初始化操作
int j,k;
for(k=1;k<=N;k++)
for(j=1;j<=N;j++){
V[k].insert(j);
d[k][j]=INF;
} for(k=1;k<=N;k++){
S[k].insert(k);
V[k].erase(k);
d[k][k]=0;
Update(k,k);
} while(T.size()<(N-1))
{
for(int i=1;i<=N;i++)
{
if(i!=FindSet(i)) continue;
e[i]=FindMin(i);
}//1 for 查找N(k)与V–N(k)之间的最小割边 for(int i=1;i<=N;i++)
{
if(i!=FindSet(i)) continue;
if(FindSet(e[i])!=FindSet(i))
{
UnionSet(e[i],i);//合并树
//V[gen]中删除S[gen_other]中的所有元素
//S[gen]中增加S[gen_other]中的所有元素
int gen,gen_other;
gen=FindSet(i);
if(gen==i) gen_other=e[i];
else gen_other=i;
set<int>::iterator it,iend;
iend=S[gen_other].end();
for(it=S[gen_other].begin();it!=iend;it++){
V[gen].erase(*it);
S[gen].insert(*it);
}
//更新d值,在V[gen]中比较d[gen][i]和d[gen_other][i],取小值
iend=V[gen].end();
for(it=V[gen].begin();it!=iend;it++)
if(d[gen][*it]>d[gen_other][*it])
d[gen][*it]=d[gen_other][*it];
T.push_back(adjmatrix[e[i]][i]);
printf("%d---%d\n",e[i],i);
}
}//2 for 合并两棵树
}//while循环
}//sollin算法
};//graph类
Sollin算法的C++实现 BY gremount的更多相关文章
- Borůvka (Sollin) 算法求 MST 最小生成树
基本思路: 用定点数组记录每个子树的最近邻居. 对于每一条边进行处理: 如果这条边连成的两个顶点同属于一个集合,则不处理,否则检测这条边连接的两个子树,如果是连接这两个子树的最小边,则更新 (合并). ...
- ACM主要算法
ACM主要算法ACM主要算法介绍 初期篇 一.基本算法(1)枚举(poj1753, poj2965)(2)贪心(poj1328, poj2109, poj2586)(3)递归和分治法(4)递推(5)构 ...
- ACM常用算法
数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 一维线段树 二维 ...
- ACM需要掌握算法
数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 一维线段树 二维 ...
- ACM用到的算法。先做个笔记,记一下
ACM 所有算法 数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 ...
- ACM算法目录
数据结构 栈,队列,链表 •哈希表,哈希数组 •堆,优先队列 双端队列 可并堆 左偏堆 •二叉查找树 Treap 伸展树 •并查集 集合计数问题 二分图的识别 •平衡二叉树 •二叉排序树 •线段树 一 ...
- ACM技能表
看看就好了(滑稽) 数据结构 栈 栈 单调栈 队列 一般队列 优先队列/单调队列 循环队列 双端队列 链表 一般链表 循环链表 双向链表 块状链表 十字链表 邻接表/邻接矩阵 邻接表 邻接多重表 Ha ...
- Radix Heap ---Dijkstra算法的优化 BY Gremount
Radix Heap 算法是在Dijkstra的Dial实现的基础上,通过减少对桶的使用,来优化算法的时间复杂度: Dial 时间复杂度是O(m+nC) -------C是最长的链路 Radi ...
- ACM算法整理(不断补充ing)
动态规划 1.背包问题 (1)01背包 ,n) DFR(v,V,C[i]) F[v]=max(F[v],F[v-C[i]]+W[i]); } //初始化时 //若背包不一定装满F全初始化为0 //若装 ...
随机推荐
- Java 之 字符缓冲流
一.字符缓冲输出流 java.io.BufferedWriter extends Writer BufferedWriter:字符缓冲输出流. 继承自父类的共性成员方法: void write(int ...
- log4j托管tomcat日志
由于项目中 Tomcat 日志越来越大,对于日志查找非常不方便,所以经过一番调查可以通过log4j来托管 Tomcat 日志的方式,实现Tomcat日志切片.这里只说明怎么是log4j托管Tomcat ...
- springboot系列(九)springboot使用druid数据源
Druid是阿里巴巴开源平台上一个数据库连接池实现,它结合了C3P0.DBCP.PROXOOL等DB池的优点,同时加入了日志监控,可以很好的监控DB池连接和SQL的执行情况,可以说是针对监控而生的DB ...
- TLS之殇如何把我逼上绝望
1.协议的形式化分析,前提是弄清楚协议结构和协议参与者之间的会话交互,以及会话之间使用的加解密算法,签名算法,认证算法,等牵扯的算法.之后便是将要分析的协议部分进行抽象化,具体抽象涉及协议参与者(发起 ...
- TLS1.3 PPT 整理
1.握手协议的目的是什么 建立共享秘钥(通常使用公钥加密).协商算法和模型以及加密使用的参数,验证身份. 2.记录协议 传输独立的信息,在堆成加密算法下保护数据传输 3.RSA Handshake S ...
- LB_Kim
LB_Kim 搜了一圈发现居然很少有博客说到这个东西, LB_Kim, 就是Kim设计的 下界函数 计算公式: LB_Kim(S,C)=MAX(i=1,2,3,4) d(∮(i)A,∮(i)C) em ...
- 开源框架---tensorflow c++ API中./configure步骤细节
u@u160406:~/tf1.13/tensorflow$ git checkout r1.13 分支 r1.13 设置为跟踪来自 origin 的远程分支 r1.13.切换到一个新分支 'r1.1 ...
- 学习php doctrine
了解symfony3.3.PHP FIG.Doctrine: 了解angular2.material2:. 熟悉git:了解开源项目:openstack docker ceph等: NoSQL(HBa ...
- vueRouter history模式下 nginx配置
对于VUE的router[mode: history]模式(这里主要是为了去除链接上的"#")开发的时候,一般都不出问题.是因为开发时用的服务器为node,Dev环境中已配置好了, ...
- BLOB和TEXT
区别: BLOB存储的是二进制数据,没有排序规则或字符集. TEXT存储的是字符,有排序规则和字符集. 因为Memory引擎不支持BLOB和TEXT类型,最好的解决方案避免使用BLOB和TEXT类型. ...