转自https://www.cnblogs.com/futurehau/p/6524396.html

Annoy是高维空间求近似最近邻的一个开源库。

Annoy构建一棵二叉树,查询时间为O(logn)。

Annoy通过随机挑选两个点,并使用垂直于这个点的等距离超平面将集合划分为两部分。

如图所示,图中灰色线是连接两个点,超平面是加粗的黑线。按照这个方法在每个子集上迭代进行划分。

依此类推,直到每个集合最多剩余k个点,下图是一个k = 10 的情况。

相应的完整二叉树结构:

随机投影森林。

一个思想依据是:在原空间中相邻的点,在树结构上也表现出相互靠近的特点,也就是说,如果两个点在空间上相互靠近,那么他们很可能被树结构划分到一起。

如果要在空间中查找临近点,我们可以在这个二叉树中搜索。上图中每个节点用超平面来定义,所以我们可以计算出该节点往哪个方向遍历,搜索时间 log n

如上图,我们找到了七个最近邻,但是假如我们想找到更多的最近邻怎么办?有些最近邻是在我们遍历的叶子节点的外边的。

技巧1:使用优先队列

如果一个划分的两边“靠得足够近”(量化方式在后面介绍),我们就两边都遍历。这样就不只是遍历一个节点的一边,我们将遍历更多的点

我们可以设置一个阈值,用来表示是否愿意搜索划分“错”的一遍。如果设置为0,我们将总是遍历“对”的一片。但是如果设置成0.5,就按照上面的搜索路径。

这个技巧实际上是利用优先级队列,依据两边的最大距离。好处是我们能够设置比0大的阈值,逐渐增加搜索范围。

技巧2:构建一个森林

我们能够用一个优先级队列,同时搜索所有的树。这样有另外一个好处,搜索会聚焦到那些与已知点靠得最近的那些树——能够把距离最远的空间划分出去

每棵树都包含所有的点,所以当我们搜索多棵树的时候,将找到多棵树上的多个点。如果我们把所有的搜索结果的叶子节点都合在一起,那么得到的最近邻就非常符合要求。

依照上述方法,我们找到一个近邻的集合,接下来就是计算所有的距离和对这些点进行排序,找到最近的k个点。

很明显,我们会丢掉一些最近的点,这也是为什么叫近似最近邻的原因。

Annoy在实际使用的时候,提供了一种机制可以调整(搜索k),你能够根据它来权衡性能(时间)和准确度(质量)。

tips:

1.距离计算,采用归一化的欧氏距离:vectors = sqrt(2-2*cos(u, v))

2.向量维度较小(<100),即使维度到达1000变现也不错

3.内存占用小

4.索引创建与查找分离(特别是一旦树已经创建,就不能添加更多项)

5.有两个参数可以用来调节Annoy 树的数量n_trees和搜索期间检查的节点数量search_k

  n_trees在构建时提供,并影响构建时间和索引大小。 较大的值将给出更准确的结果,但更大的索引。

  search_k在运行时提供,并影响搜索性能。 较大的值将给出更准确的结果,但将需要更长的时间返回。

如果不提供search_k,它将默认为n *
n_trees,其中n是近似最近邻的数目。
否则,search_k和n_tree大致是独立的,即如果search_k保持不变,n_tree的值不会影响搜索时间,反之亦然。
基本上,建议在可用负载量的情况下尽可能大地设置n_trees,并且考虑到查询的时间限制,建议将search_k设置为尽可能大。

近似最近邻算法-annoy解析的更多相关文章

  1. Annoy解析

    Annoy是高维空间求近似最近邻的一个开源库. Annoy构建一棵二叉树,查询时间为O(logn). Annoy通过随机挑选两个点,并使用垂直于这个点的等距离超平面将集合划分为两部分. 如图所示,图中 ...

  2. JS-常考算法题解析

    常考算法题解析 这一章节依托于上一章节的内容,毕竟了解了数据结构我们才能写出更好的算法. 对于大部分公司的面试来说,排序的内容已经足以应付了,由此为了更好的符合大众需求,排序的内容是最多的.当然如果你 ...

  3. 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类

    手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...

  4. 使用C语言实现二维,三维绘图算法(2)-解析曲面的显示

    使用C语言实现二维,三维绘图算法(2)-解析曲面的显示 ---- 引言---- 每次使用OpenGL或DirectX写三维程序的时候, 都有一种隔靴搔痒的感觉, 对于内部的三维算法的实现不甚了解. 其 ...

  5. KNN(k-nearest neighbor的缩写)又叫最近邻算法

    KNN(k-nearest neighbor的缩写)又叫最近邻算法 机器学习笔记--KNN算法1 前言 Hello ,everyone. 我是小花.大四毕业,留在学校有点事情,就在这里和大家吹吹我们的 ...

  6. 【算法】K最近邻算法(K-NEAREST NEIGHBOURS,KNN)

    K最近邻算法(k-nearest neighbours,KNN) 算法 对一个元素进行分类 查看它k个最近的邻居 在这些邻居中,哪个种类多,这个元素有更大概率是这个种类 使用 使用KNN来做两项基本工 ...

  7. 最近邻算法(KNN)

    最近邻算法: 1.什么是最近邻是什么? kNN算法全程是k-最近邻算法(k-Nearest Neighbor) kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数数以一个类型别 ...

  8. Adaboost 算法实例解析

    Adaboost 算法实例解析 1 Adaboost的原理 1.1 Adaboost基本介绍 AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由 ...

  9. 2. Attention Is All You Need(Transformer)算法原理解析

    1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原 ...

随机推荐

  1. 安卓开发之利用runOnUiThread在子线程更新UI

    package com.lidaochen.test; import android.graphics.Bitmap; import android.graphics.BitmapFactory; i ...

  2. java保证多线程的执行顺序

    1. java多线程环境中,如何保证多个线程按指定的顺序执行呢? 1.1 通过thread的join方法保证多线程的顺序执行, wait是让主线程等待 比如一个main方法里面先后运行thread1, ...

  3. 配置和查看composer镜像

    composer 默认地址改为中国镜像地址,以及中国镜像地址还原成默认地址 一.查看当前镜像地址 在命令行输入如下命令,即可查看全局镜像地址: $ composer config -g repo.pa ...

  4. sql 四舍五入 保留两位小数

    一.问题描述 数据库里的 float momey 类型,都会精确到多位小数.但有时候 我们不需要那么精确,例如,只精确到两位有效数字. 二.sqlserver解决方案: 1. 使用 Round() 函 ...

  5. Flink原理(一)——基础架构

    Flink系列博客,基于Flink1.6,打算分为三部分:原理.源码.实例以及API使用分析,后期等系列博客完成后再弄一个目录. 该系列博客是我自己学习过程中的一些理解,若有不正确.不准确的地方欢迎大 ...

  6. SpringBoot框架之通用mapper插件(tk.mybatis)

    一.Tkmybatis的好处 Tkmybatis是在mybatis框架的基础上提供了很多工具,让开发更加高效.这个插件里面封装好了我们需要用到的很多sql语句,不过这个插件是通过我们去调用它封装的各种 ...

  7. c++ 流对象之streambuf(可当做缓冲区使用)

    在C++ 中引入了流的概念,我们很方便的通过流来读写文本数据和二进制数据,那么流对象的数据究竟是怎么存储的呢,为了搞清这个问题,先来看一看c++ 的 io 体系: 由图可以看出,在stream 的实现 ...

  8. MySql 数据库 SQLException: The user specified as a definer ('root'@'%') does not exist 错误原因及解决办法

    The user specified as a definer ('root'@'%') does not exist 此种报错主要是针对访问视图文件引起的(没有权限) 经查明:是用户root并没有获 ...

  9. 学习了武沛齐讲的Day11-完

    DAY11 老师讲了很多,理解了一个方法   当有复杂的问题时,先拆解很小的单元(10行),测试通过了,再简化(3行) len range 感悟:其实不用计记代码(主要是记不动),,当遇到问题时:找出 ...

  10. springboot整合springsecurity遇到的问题

    在整合springsecurity时遇到好几个问题,自动配置登录,下线,注销用户的操作,数据基于mybatis,模版引擎用的thymeleaf+bootstrap. 一.认证时密码的加密(passwo ...