版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_21904665/article/details/52315642

ElasticNet 是一种使用L1和L2先验作为正则化矩阵的线性回归模型.这种组合用于只有很少的权重非零的稀疏模型,比如:class:Lasso, 但是又能保持:class:Ridge 的正则化属性.我们可以使用 l1_ratio 参数来调节L1和L2的凸组合(一类特殊的线性组合)。

当多个特征和另一个特征相关的时候弹性网络非常有用。Lasso 倾向于随机选择其中一个,而弹性网络更倾向于选择两个.
在实践中,Lasso 和 Ridge 之间权衡的一个优势是它允许在循环过程(Under rotate)中继承 Ridge 的稳定性.
弹性网络的目标函数是最小化:

ElasticNetCV 可以通过交叉验证来用来设置参数 alpha () 和 l1_ratio ()

  1.  
    print(__doc__)
  2.  
     
  3.  
    import numpy as np
  4.  
    import matplotlib.pyplot as plt
  5.  
     
  6.  
    from sklearn.linear_model import lasso_path, enet_path
  7.  
    from sklearn import datasets
  8.  
     
  9.  
    diabetes = datasets.load_diabetes()
  10.  
    X = diabetes.data
  11.  
    y = diabetes.target
  12.  
     
  13.  
    X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter)
  14.  
     
  15.  
    # Compute paths
  16.  
     
  17.  
    eps = 5e-3 # the smaller it is the longer is the path
  18.  
     
  19.  
    print("Computing regularization path using the lasso...")
  20.  
    alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False)
  21.  
     
  22.  
    print("Computing regularization path using the positive lasso...")
  23.  
    alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path(
  24.  
    X, y, eps, positive=True, fit_intercept=False)
  25.  
    print("Computing regularization path using the elastic net...")
  26.  
    alphas_enet, coefs_enet, _ = enet_path(
  27.  
    X, y, eps=eps, l1_ratio=0.8, fit_intercept=False)
  28.  
     
  29.  
    print("Computing regularization path using the positve elastic net...")
  30.  
    alphas_positive_enet, coefs_positive_enet, _ = enet_path(
  31.  
    X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False)
  32.  
     
  33.  
    # Display results
  34.  
     
  35.  
    plt.figure(1)
  36.  
    ax = plt.gca()
  37.  
    ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k'])
  38.  
    l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T)
  39.  
    l2 = plt.plot(-np.log10(alphas_enet), coefs_enet.T, linestyle='--')
  40.  
     
  41.  
    plt.xlabel('-Log(alpha)')
  42.  
    plt.ylabel('coefficients')
  43.  
    plt.title('Lasso and Elastic-Net Paths')
  44.  
    plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left')
  45.  
    plt.axis('tight')
  46.  
     
  47.  
     
  48.  
    plt.figure(2)
  49.  
    ax = plt.gca()
  50.  
    ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k'])
  51.  
    l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T)
  52.  
    l2 = plt.plot(-np.log10(alphas_positive_lasso), coefs_positive_lasso.T,
  53.  
    linestyle='--')
  54.  
     
  55.  
    plt.xlabel('-Log(alpha)')
  56.  
    plt.ylabel('coefficients')
  57.  
    plt.title('Lasso and positive Lasso')
  58.  
    plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left')
  59.  
    plt.axis('tight')
  60.  
     
  61.  
     
  62.  
    plt.figure(3)
  63.  
    ax = plt.gca()
  64.  
    ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k'])
  65.  
    l1 = plt.plot(-np.log10(alphas_enet), coefs_enet.T)
  66.  
    l2 = plt.plot(-np.log10(alphas_positive_enet), coefs_positive_enet.T,
  67.  
    linestyle='--')
  68.  
     
  69.  
    plt.xlabel('-Log(alpha)')
  70.  
    plt.ylabel('coefficients')
  71.  
    plt.title('Elastic-Net and positive Elastic-Net')
  72.  
    plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'),
  73.  
    loc='lower left')
  74.  
    plt.axis('tight')
  75.  
    plt.show()

4.弹性网络( Elastic Net)的更多相关文章

  1. 【笔记】简谈L1正则项L2正则和弹性网络

    L1,L2,以及弹性网络 前情提要: 模型泛化与岭回归与LASSO 正则 ridge和lasso的后面添加的式子的格式上其实和MSE,MAE,以及欧拉距离和曼哈顿距离是非常像的 虽然应用场景不同,但是 ...

  2. 机器学习:模型泛化(L1、L2 和弹性网络)

    一.岭回归和 LASSO 回归的推导过程 1)岭回归和LASSO回归都是解决模型训练过程中的过拟合问题 具体操作:在原始的损失函数后添加正则项,来尽量的减小模型学习到的 θ 的大小,使得模型的泛化能力 ...

  3. 机器学习算法--Elastic Net

    1) alpha : float, optional Constant that multiplies the penalty terms. Defaults to 1.0. See the note ...

  4. [源码解析] 深度学习分布式训练框架 horovod (20) --- Elastic Training Operator

    [源码解析] 深度学习分布式训练框架 horovod (20) --- Elastic Training Operator 目录 [源码解析] 深度学习分布式训练框架 horovod (20) --- ...

  5. 基于C#的机器学习--颜色混合-自组织映射和弹性神经网络

    自组织映射和弹性神经网络 自组织映射(SOM),或者你们可能听说过的Kohonen映射,是自组织神经网络的基本类型之一.自组织的能力提供了对以前不可见的输入数据的适应性.它被理论化为最自然的学习方式之 ...

  6. 阿里云弹性裸金属服务器-神龙架构(X-Dragon)揭秘

    在5月16日的飞天技术会新品直播中,特别邀请了业界知名大咖狒哥以及阿里云虚拟化资深专家旭卿作为现场直播的嘉宾.本次直播主要从产品背景到“X-Dragon架构”,从硬件设备到软件应用来深度的剖析“X-D ...

  7. [Machine Learning] 机器学习常见算法分类汇总

    声明:本篇博文根据http://www.ctocio.com/hotnews/15919.html整理,原作者张萌,尊重原创. 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多 ...

  8. Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...

  9. 转:netflix推荐系统竞赛

    原文链接:Netflix recommendations: beyond the 5 stars (Part 1), (Part 2) 原文作者:Xavier Amatriain and Justin ...

随机推荐

  1. Python 一些内置函数的总结~~~~

    1. type() 两种用法 a. 当传入参数为一个时,返回值为参数的类型 b. 当传入参数为三个时,type(name, bases, dict) name: 类名 bases: 继承父类的元组,可 ...

  2. nginx日志配置笔记:if条件

    1.特定条件写日志: 参照: https://stackoverflow.com/questions/19011719/how-to-write-only-logs-with-200-status h ...

  3. Centos7安装教程

    1.下载centos7的镜像 到华为云镜像官方网站下载https://mirrors.huaweicloud.com/ 2.创建虚拟机并载入镜像 3.开启虚拟机,正式安装 选择第一项:Install ...

  4. 开源框架---tensorflow c++ API中./configure步骤细节

    u@u160406:~/tf1.13/tensorflow$ git checkout r1.13 分支 r1.13 设置为跟踪来自 origin 的远程分支 r1.13.切换到一个新分支 'r1.1 ...

  5. 十年种树----小白的起点save

    大家好,给大家介绍一下我自己.各平台通用ID:琴鬼白羊,男,一个24岁学习采矿工程的在读研究僧,一个24岁还在想学习计算机的小白. 非洲经济学家Dambisa Moyo在他的<dead aid& ...

  6. SpringCloud之Eureka

    [前面的话]SpringCloud为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选.分布式会话等等.它配置简单,上手快,而且生态成 ...

  7. vscode java是否合适??

    https://blog.csdn.net/luoaki/article/details/79138028 Language support for Java ™ for Visual Studio ...

  8. SpringBoot自动配置的魔法是怎么实现的

    SpringBoot 最重要的功能就是自动配置,帮我们省去繁琐重复地配置工作.相信用过SpringBoot的人,都会被它简洁的步骤所惊讶.那么 SpringBoot 是如何实现自动配置的呢? 在这之前 ...

  9. unittest----assert断言的使用

    unittest的官发文档链接:https://docs.python.org/2.7/library/unittest.html#unittest.TestCase 先介绍下unittest的基本使 ...

  10. npm命令Error: EINVAL: invalid argument, mkdir

    错误原因:在node.js的安装目录下创建两个文件夹,node_cache和node_global,然后命令行设置: npm config set cache "D:\nodejs\node ...