4.弹性网络( Elastic Net)
ElasticNet 是一种使用L1和L2先验作为正则化矩阵的线性回归模型.这种组合用于只有很少的权重非零的稀疏模型,比如:class:Lasso, 但是又能保持:class:Ridge 的正则化属性.我们可以使用 l1_ratio 参数来调节L1和L2的凸组合(一类特殊的线性组合)。
当多个特征和另一个特征相关的时候弹性网络非常有用。Lasso 倾向于随机选择其中一个,而弹性网络更倾向于选择两个.
在实践中,Lasso 和 Ridge 之间权衡的一个优势是它允许在循环过程(Under rotate)中继承 Ridge 的稳定性.
弹性网络的目标函数是最小化:
ElasticNetCV 可以通过交叉验证来用来设置参数 alpha
() 和
l1_ratio
()
- print(__doc__)
- import numpy as np
- import matplotlib.pyplot as plt
- from sklearn.linear_model import lasso_path, enet_path
- from sklearn import datasets
- diabetes = datasets.load_diabetes()
- X = diabetes.data
- y = diabetes.target
- X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter)
- # Compute paths
- eps = 5e-3 # the smaller it is the longer is the path
- print("Computing regularization path using the lasso...")
- alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False)
- print("Computing regularization path using the positive lasso...")
- alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path(
- X, y, eps, positive=True, fit_intercept=False)
- print("Computing regularization path using the elastic net...")
- alphas_enet, coefs_enet, _ = enet_path(
- X, y, eps=eps, l1_ratio=0.8, fit_intercept=False)
- print("Computing regularization path using the positve elastic net...")
- alphas_positive_enet, coefs_positive_enet, _ = enet_path(
- X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False)
- # Display results
- plt.figure(1)
- ax = plt.gca()
- ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k'])
- l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T)
- l2 = plt.plot(-np.log10(alphas_enet), coefs_enet.T, linestyle='--')
- plt.xlabel('-Log(alpha)')
- plt.ylabel('coefficients')
- plt.title('Lasso and Elastic-Net Paths')
- plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left')
- plt.axis('tight')
- plt.figure(2)
- ax = plt.gca()
- ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k'])
- l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T)
- l2 = plt.plot(-np.log10(alphas_positive_lasso), coefs_positive_lasso.T,
- linestyle='--')
- plt.xlabel('-Log(alpha)')
- plt.ylabel('coefficients')
- plt.title('Lasso and positive Lasso')
- plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left')
- plt.axis('tight')
- plt.figure(3)
- ax = plt.gca()
- ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k'])
- l1 = plt.plot(-np.log10(alphas_enet), coefs_enet.T)
- l2 = plt.plot(-np.log10(alphas_positive_enet), coefs_positive_enet.T,
- linestyle='--')
- plt.xlabel('-Log(alpha)')
- plt.ylabel('coefficients')
- plt.title('Elastic-Net and positive Elastic-Net')
- plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'),
- loc='lower left')
- plt.axis('tight')
- plt.show()
4.弹性网络( Elastic Net)的更多相关文章
- 【笔记】简谈L1正则项L2正则和弹性网络
L1,L2,以及弹性网络 前情提要: 模型泛化与岭回归与LASSO 正则 ridge和lasso的后面添加的式子的格式上其实和MSE,MAE,以及欧拉距离和曼哈顿距离是非常像的 虽然应用场景不同,但是 ...
- 机器学习:模型泛化(L1、L2 和弹性网络)
一.岭回归和 LASSO 回归的推导过程 1)岭回归和LASSO回归都是解决模型训练过程中的过拟合问题 具体操作:在原始的损失函数后添加正则项,来尽量的减小模型学习到的 θ 的大小,使得模型的泛化能力 ...
- 机器学习算法--Elastic Net
1) alpha : float, optional Constant that multiplies the penalty terms. Defaults to 1.0. See the note ...
- [源码解析] 深度学习分布式训练框架 horovod (20) --- Elastic Training Operator
[源码解析] 深度学习分布式训练框架 horovod (20) --- Elastic Training Operator 目录 [源码解析] 深度学习分布式训练框架 horovod (20) --- ...
- 基于C#的机器学习--颜色混合-自组织映射和弹性神经网络
自组织映射和弹性神经网络 自组织映射(SOM),或者你们可能听说过的Kohonen映射,是自组织神经网络的基本类型之一.自组织的能力提供了对以前不可见的输入数据的适应性.它被理论化为最自然的学习方式之 ...
- 阿里云弹性裸金属服务器-神龙架构(X-Dragon)揭秘
在5月16日的飞天技术会新品直播中,特别邀请了业界知名大咖狒哥以及阿里云虚拟化资深专家旭卿作为现场直播的嘉宾.本次直播主要从产品背景到“X-Dragon架构”,从硬件设备到软件应用来深度的剖析“X-D ...
- [Machine Learning] 机器学习常见算法分类汇总
声明:本篇博文根据http://www.ctocio.com/hotnews/15919.html整理,原作者张萌,尊重原创. 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多 ...
- Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...
- 转:netflix推荐系统竞赛
原文链接:Netflix recommendations: beyond the 5 stars (Part 1), (Part 2) 原文作者:Xavier Amatriain and Justin ...
随机推荐
- Nginx 安装目录 和 编译参数
安装目录详解 查看安装nginx之后总共生成了哪些文件 rpm -ql nginx 在上面的文件中包括配置文件和日志文件 /etc/logrotate.d/nginx 类型:配置文件 作用:Nginx ...
- 【SpringMVC】RESTful支持
一.概述 1.1 什么是RESTful 1.2 URL的RESTful实现 二.演示 2.1 需求 2.2 第一步更改DispatcherServlet配置 2.3 第二步参数通过url传递 2.4 ...
- java.lang.NoClassDefFoundError: Could not initialize class xxx
感慨:啊啊啊啊啊啊啊啊啊啊,这个问题弄了我好久,整整一天!!! 概述:原本是调用公司自己写的jar包的工具类.在其他项目都能调用,一模一样的套用过来就是不行.问了一些同事他们也不知道怎么解决. 然后百 ...
- 《Python编程:从入门到实践》第三章 列表简介 习题答案
#3.1 names=['lpr','tjl','gnl','by','dqy']; print(names[0]); print(names[1]); print(names[2]); print( ...
- vim配置笔记
1. vim两种配置方法 1)配置文件 全局配置文件:/etc/vim/vimrc或者/etc/vimrc 用户个人配置文件:~/.vimrc 2)命令模式 命令行模式下直接输入配置命令即可.如:se ...
- Vue项目打包发布,配置Nginx
#user nobody; worker_processes 1; #error_log logs/error.log; #error_log logs/error.log notice; #erro ...
- 剑指Offer(二十九):最小的K个数
剑指Offer(二十九):最小的K个数 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net/baid ...
- GET和POST的区别【转载】
GET和POST是HTTP请求的两种基本方法,要说它们的区别,接触过WEB开发的人都能说出一二. 最直观的区别就是GET把参数包含在URL中,POST通过request body传递参数. 你可能自己 ...
- [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)
[51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1Nμ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...
- 论文笔记-Deep Affinity Network for Multiple Object Tracking
作者: ShijieSun, Naveed Akhtar, HuanShengSong, Ajmal Mian, Mubarak Shah 来源: arXiv:1810.11780v1 项目:http ...