【零基础】神经网络优化之Adam
一、序言
Adam是神经网络优化的另一种方法,有点类似上一篇中的“动量梯度下降”,实际上是先提出了RMSprop(类似动量梯度下降的优化算法),而后结合RMSprop和动量梯度下降整出了Adam,所以这里我们先由动量梯度下降引申出RMSprop,最后再介绍Adam。不过,由于RMSprop、Adam什么的,真的太难理解了,我就只说实现不说原理了。
二、RMSprop
先回顾一下动量梯度下降中的“指数加权平均”公式:
vDW1 = beta*vDW0 + (1-beta)*dw1
vDb1 = beta*vDb0 + (1-beta)*db1
动量梯度下降:
W = W - learning_rate*vDW
b = b - learning_rate*vDb
简而言之就是在更新W和b时不使用dw和db,而是使用其“指数加权平均”的值。
RMSprop只是做了一点微小的改变,为了便于区分将v改成s:
sDW1= beta*sDW0 + (1-beta)*dw1^2
sDb1 = beta*sDb0 + (1-beta)*db1^2
RMSprop梯度下降,其中sqrt是开平方根的意思:
W = W - learning_rate*(dw/sqrt(sDW))
b = b - learning_rate*(db/sqrt(sDb))
需要注意的是,无论是dw^2还是sqrt(sDW)都是矩阵内部元素的平方或开根。
三、Adam
Adam是结合动量梯度下降和RMSprop的混合体,先按动量梯度下降算出vDW、vDb
vDW1 = betaV*vDW0 + (1-beta)*dw1
vDb1 = betaV*vDb0 + (1-beta)*db1
然后按RMSprop算出sDW、sDb:
sDW1= betaS*sDW0 + (1-beta)*dw1^2
sDb1 = betaS*sDb0 + (1-beta)*db1^2
最后Adam的梯度下降是结合了v和s:
W = W - learning_rate*( vDW/sqrt(sDW) )
b = b - learning_rate*( vDb/sqrt(sDb) )
我们来看下最终实现后的效果:

是的,你没有看错。。。只需要100次训练,就比以前2000次训练的效果还要好!看到这个结果其实我也很震惊,反复查了几遍。
不过使用Adam优化后的神经网络一定要注意learning_rate的设置,我这里改成了0.01(之前一直是0.1,多次试错后才发现是这个问题)否则会发生梯度消失(表现为dw等于0)。
四、回顾
本篇是在mini_batch的基础上,结合动量梯度下降、RMSprop做的Adam梯度下降,其目的与mini_batch、动量梯度下降一样,都是使神经网络可以更快找到最优解,不得不说Adam实在太给力了。完整的实现代码请关注公众号“零基础爱学习”回复“AI13”获取。

【零基础】神经网络优化之Adam的更多相关文章
- 【零基础】神经网络优化之mini-batch
一.前言 回顾一下前面讲过的两种解决过拟合的方法: 1)L0.L1.L2:在向前传播.反向传播后面加个小尾巴 2)dropout:训练时随机“删除”一部分神经元 本篇要介绍的优化方法叫mini-bat ...
- 【零基础】神经网络优化之dropout和梯度校验
一.序言 dropout和L1.L2一样是一种解决过拟合的方法,梯度检验则是一种检验“反向传播”计算是否准确的方法,这里合并简单讲述,并在文末提供完整示例代码,代码中还包含了之前L2的示例,全都是在“ ...
- 【零基础】神经网络优化之L1、L2
一.序言 前面的文章中,我们逐步从单神经元.浅层网络到深层网络,并且大概搞懂了“向前传播”和“反向传播”的原理,比较而言深层网络做“手写数字”识别已经游刃有余了,但神经网络还存在很多问题,比如最常见的 ...
- 神经网络优化算法:梯度下降法、Momentum、RMSprop和Adam
最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识.关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结.吴恩达的深度 ...
- 狗屁不通的“视频专辑:零基础学习C语言(小甲鱼版)”(2)
前文链接:狗屁不通的“视频专辑:零基础学习C语言(小甲鱼版)”(1) 小甲鱼在很多情况下是跟着谭浩强鹦鹉学舌,所以谭浩强书中的很多错误他又重复了一次.这样,加上他自己的错误,错谬之处难以胜数. 由于拙 ...
- IM开发者的零基础通信技术入门(二):通信交换技术的百年发展史(下)
1.系列文章引言 1.1 适合谁来阅读? 本系列文章尽量使用最浅显易懂的文字.图片来组织内容,力求通信技术零基础的人群也能看懂.但个人建议,至少稍微了解过网络通信方面的知识后再看,会更有收获.如果您大 ...
- IM开发者的零基础通信技术入门(一):通信交换技术的百年发展史(上)
[来源申明]本文原文来自:微信公众号“鲜枣课堂”,官方网站:xzclass.com,原题为:<通信交换的百年沧桑(上)>,本文引用时已征得原作者同意.为了更好的内容呈现,即时通讯网在收录时 ...
- IM开发者的零基础通信技术入门(三):国人通信方式的百年变迁
[来源申明]本文原文来自:微信公众号“鲜枣课堂”,官方网站:xzclass.com,原题为:<中国通信的百年沉浮>,本文引用时已征得原作者同意.为了更好的内容呈现,即时通讯网在收录时内容有 ...
- 【零基础】使用Tensorflow实现神经网络
一.序言 前面已经逐步从单神经元慢慢“爬”到了神经网络并把常见的优化都逐个解析了,再往前走就是一些实际应用问题,所以在开始实际应用之前还得把“框架”翻出来,因为后面要做的工作需要我们将精力集中在业务而 ...
随机推荐
- JavaScript内置一些方法的实现原理--new关键字,call/apply/bind方法--前戏
new关键字,call/apply/bind方法都和this的绑定有关,在学习之前,首先要理解this. 一起来学习一下this吧 首先.this是一个对象. 对象很好理解,引用类型值,可以实现如th ...
- php权限管理
首先权限管理肯定是需要登陆的,这里就简单的写一个登陆页面. 简单的登陆页面login.php <h1>登录页面</h1> <form action="login ...
- zabbix推送内存监控单应用shell
利用top方式获取指定第三方的内存使用率 #!/bin/bash process=$1 if [ ! -z $process ];then cd /zabbix/zabbix-agent/script ...
- zabbix server搭建遇到的问题
环境 CentOS 6.3 server nginx-1.6.3 MySQL-5.6.25 安装nginx遇到的问题 启动nginx时候提示错误“/usr/local/nginx/sbin/nginx ...
- kali linux Desktop Environemt types and kali linux install virualbox
1.we know the kali linux desktop environmet can also be costomized ,Desktop environmet can use GNOME ...
- Notes for <<Thinking In Java>>
String Thus, when you create a toString( ) method, if the operations are simple ones that the comp ...
- Tensorflow&CNN:裂纹分类
版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/90478551 - 写在前面 本科毕业设计终于告一段落了.特 ...
- CentOS7下Yum安装Redis并配置主从
原文 :https://blog.51cto.com/11134648/2158209 Redis简介: Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库.它通常被 ...
- linux个人常用命令【持续更新】
netstat -tnl 查看网络相关的端口情况 ps -A 查看所有进程的情况 cat /proc/cpuinfo| grep "physical id"| sort| uniq ...
- linux使用文本编辑器vi常用命令
一:翻页 ctrl+u向上翻半页 ctrl+d 向下翻半页 ctrl+f/page up向上翻一页 ctrl+b/page on 向下翻一页 H光标移到当前页的第一个字符 M光标移到当前页的中 ...